FunASR/funasr/bin/vad_infer.py
2023-05-16 13:58:11 +08:00

202 lines
7.1 KiB
Python

# -*- encoding: utf-8 -*-
#!/usr/bin/env python3
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import argparse
import logging
import os
import sys
import json
from pathlib import Path
from typing import Any
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
from typing import Dict
import math
import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
from funasr.modules.subsampling import TooShortUttError
from funasr.tasks.vad import VADTask
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.utils import asr_utils, wav_utils, postprocess_utils
from funasr.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline
class Speech2VadSegment:
"""Speech2VadSegment class
Examples:
>>> import soundfile
>>> speech2segment = Speech2VadSegment("vad_config.yml", "vad.pt")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2segment(audio)
[[10, 230], [245, 450], ...]
"""
def __init__(
self,
vad_infer_config: Union[Path, str] = None,
vad_model_file: Union[Path, str] = None,
vad_cmvn_file: Union[Path, str] = None,
device: str = "cpu",
batch_size: int = 1,
dtype: str = "float32",
**kwargs,
):
assert check_argument_types()
# 1. Build vad model
vad_model, vad_infer_args = VADTask.build_model_from_file(
vad_infer_config, vad_model_file, device
)
frontend = None
if vad_infer_args.frontend is not None:
frontend = WavFrontend(cmvn_file=vad_cmvn_file, **vad_infer_args.frontend_conf)
logging.info("vad_model: {}".format(vad_model))
logging.info("vad_infer_args: {}".format(vad_infer_args))
vad_model.to(dtype=getattr(torch, dtype)).eval()
self.vad_model = vad_model
self.vad_infer_args = vad_infer_args
self.device = device
self.dtype = dtype
self.frontend = frontend
self.batch_size = batch_size
@torch.no_grad()
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None,
in_cache: Dict[str, torch.Tensor] = dict()
) -> Tuple[List[List[int]], Dict[str, torch.Tensor]]:
"""Inference
Args:
speech: Input speech data
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
if self.frontend is not None:
self.frontend.filter_length_max = math.inf
fbanks, fbanks_len = self.frontend.forward_fbank(speech, speech_lengths)
feats, feats_len = self.frontend.forward_lfr_cmvn(fbanks, fbanks_len)
fbanks = to_device(fbanks, device=self.device)
feats = to_device(feats, device=self.device)
feats_len = feats_len.int()
else:
raise Exception("Need to extract feats first, please configure frontend configuration")
# b. Forward Encoder streaming
t_offset = 0
step = min(feats_len.max(), 6000)
segments = [[]] * self.batch_size
for t_offset in range(0, feats_len, min(step, feats_len - t_offset)):
if t_offset + step >= feats_len - 1:
step = feats_len - t_offset
is_final = True
else:
is_final = False
batch = {
"feats": feats[:, t_offset:t_offset + step, :],
"waveform": speech[:, t_offset * 160:min(speech.shape[-1], (t_offset + step - 1) * 160 + 400)],
"is_final": is_final,
"in_cache": in_cache
}
# a. To device
#batch = to_device(batch, device=self.device)
segments_part, in_cache = self.vad_model(**batch)
if segments_part:
for batch_num in range(0, self.batch_size):
segments[batch_num] += segments_part[batch_num]
return fbanks, segments
class Speech2VadSegmentOnline(Speech2VadSegment):
"""Speech2VadSegmentOnline class
Examples:
>>> import soundfile
>>> speech2segment = Speech2VadSegmentOnline("vad_config.yml", "vad.pt")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2segment(audio)
[[10, 230], [245, 450], ...]
"""
def __init__(self, **kwargs):
super(Speech2VadSegmentOnline, self).__init__(**kwargs)
vad_cmvn_file = kwargs.get('vad_cmvn_file', None)
self.frontend = None
if self.vad_infer_args.frontend is not None:
self.frontend = WavFrontendOnline(cmvn_file=vad_cmvn_file, **self.vad_infer_args.frontend_conf)
@torch.no_grad()
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None,
in_cache: Dict[str, torch.Tensor] = dict(), is_final: bool = False, max_end_sil: int = 800
) -> Tuple[torch.Tensor, List[List[int]], torch.Tensor]:
"""Inference
Args:
speech: Input speech data
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
batch_size = speech.shape[0]
segments = [[]] * batch_size
if self.frontend is not None:
feats, feats_len = self.frontend.forward(speech, speech_lengths, is_final)
fbanks, _ = self.frontend.get_fbank()
else:
raise Exception("Need to extract feats first, please configure frontend configuration")
if feats.shape[0]:
feats = to_device(feats, device=self.device)
feats_len = feats_len.int()
waveforms = self.frontend.get_waveforms()
batch = {
"feats": feats,
"waveform": waveforms,
"in_cache": in_cache,
"is_final": is_final,
"max_end_sil": max_end_sil
}
# a. To device
batch = to_device(batch, device=self.device)
segments, in_cache = self.vad_model.forward_online(**batch)
# in_cache.update(batch['in_cache'])
# in_cache = {key: value for key, value in batch['in_cache'].items()}
return fbanks, segments, in_cache