FunASR/funasr/bin/diar_infer.py
2023-05-16 13:58:11 +08:00

348 lines
12 KiB
Python
Executable File

# -*- encoding: utf-8 -*-
#!/usr/bin/env python3
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import argparse
import logging
import os
import sys
from pathlib import Path
from typing import Any
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
from collections import OrderedDict
import numpy as np
import soundfile
import torch
from torch.nn import functional as F
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.utils.cli_utils import get_commandline_args
from funasr.tasks.diar import DiarTask
from funasr.tasks.diar import EENDOLADiarTask
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from scipy.ndimage import median_filter
from funasr.utils.misc import statistic_model_parameters
from funasr.datasets.iterable_dataset import load_bytes
from funasr.models.frontend.wav_frontend import WavFrontendMel23
class Speech2DiarizationEEND:
"""Speech2Diarlization class
Examples:
>>> import soundfile
>>> import numpy as np
>>> speech2diar = Speech2DiarizationEEND("diar_sond_config.yml", "diar_sond.pb")
>>> profile = np.load("profiles.npy")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2diar(audio, profile)
{"spk1": [(int, int), ...], ...}
"""
def __init__(
self,
diar_train_config: Union[Path, str] = None,
diar_model_file: Union[Path, str] = None,
device: str = "cpu",
dtype: str = "float32",
):
assert check_argument_types()
# 1. Build Diarization model
diar_model, diar_train_args = EENDOLADiarTask.build_model_from_file(
config_file=diar_train_config,
model_file=diar_model_file,
device=device
)
frontend = None
if diar_train_args.frontend is not None and diar_train_args.frontend_conf is not None:
frontend = WavFrontendMel23(**diar_train_args.frontend_conf)
# set up seed for eda
np.random.seed(diar_train_args.seed)
torch.manual_seed(diar_train_args.seed)
torch.cuda.manual_seed(diar_train_args.seed)
os.environ['PYTORCH_SEED'] = str(diar_train_args.seed)
logging.info("diar_model: {}".format(diar_model))
logging.info("diar_train_args: {}".format(diar_train_args))
diar_model.to(dtype=getattr(torch, dtype)).eval()
self.diar_model = diar_model
self.diar_train_args = diar_train_args
self.device = device
self.dtype = dtype
self.frontend = frontend
@torch.no_grad()
def __call__(
self,
speech: Union[torch.Tensor, np.ndarray],
speech_lengths: Union[torch.Tensor, np.ndarray] = None
):
"""Inference
Args:
speech: Input speech data
Returns:
diarization results
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
if self.frontend is not None:
feats, feats_len = self.frontend.forward(speech, speech_lengths)
feats = to_device(feats, device=self.device)
feats_len = feats_len.int()
self.diar_model.frontend = None
else:
feats = speech
feats_len = speech_lengths
batch = {"speech": feats, "speech_lengths": feats_len}
batch = to_device(batch, device=self.device)
results = self.diar_model.estimate_sequential(**batch)
return results
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Speech2Diarization instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Diarization: Speech2Diarization instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2DiarizationEEND(**kwargs)
class Speech2DiarizationSOND:
"""Speech2Xvector class
Examples:
>>> import soundfile
>>> import numpy as np
>>> speech2diar = Speech2DiarizationSOND("diar_sond_config.yml", "diar_sond.pb")
>>> profile = np.load("profiles.npy")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2diar(audio, profile)
{"spk1": [(int, int), ...], ...}
"""
def __init__(
self,
diar_train_config: Union[Path, str] = None,
diar_model_file: Union[Path, str] = None,
device: Union[str, torch.device] = "cpu",
batch_size: int = 1,
dtype: str = "float32",
streaming: bool = False,
smooth_size: int = 83,
dur_threshold: float = 10,
):
assert check_argument_types()
# TODO: 1. Build Diarization model
diar_model, diar_train_args = DiarTask.build_model_from_file(
config_file=diar_train_config,
model_file=diar_model_file,
device=device
)
logging.info("diar_model: {}".format(diar_model))
logging.info("model parameter number: {}".format(statistic_model_parameters(diar_model)))
logging.info("diar_train_args: {}".format(diar_train_args))
diar_model.to(dtype=getattr(torch, dtype)).eval()
self.diar_model = diar_model
self.diar_train_args = diar_train_args
self.token_list = diar_train_args.token_list
self.smooth_size = smooth_size
self.dur_threshold = dur_threshold
self.device = device
self.dtype = dtype
def smooth_multi_labels(self, multi_label):
multi_label = median_filter(multi_label, (self.smooth_size, 1), mode="constant", cval=0.0).astype(int)
return multi_label
@staticmethod
def calc_spk_turns(label_arr, spk_list):
turn_list = []
length = label_arr.shape[0]
n_spk = label_arr.shape[1]
for k in range(n_spk):
if spk_list[k] == "None":
continue
in_utt = False
start = 0
for i in range(length):
if label_arr[i, k] == 1 and in_utt is False:
start = i
in_utt = True
if label_arr[i, k] == 0 and in_utt is True:
turn_list.append([spk_list[k], start, i - start])
in_utt = False
if in_utt:
turn_list.append([spk_list[k], start, length - start])
return turn_list
@staticmethod
def seq2arr(seq, vec_dim=8):
def int2vec(x, vec_dim=8, dtype=np.int):
b = ('{:0' + str(vec_dim) + 'b}').format(x)
# little-endian order: lower bit first
return (np.array(list(b)[::-1]) == '1').astype(dtype)
# process oov
seq = np.array([int(x) for x in seq])
new_seq = []
for i, x in enumerate(seq):
if x < 2 ** vec_dim:
new_seq.append(x)
else:
idx_list = np.where(seq < 2 ** vec_dim)[0]
idx = np.abs(idx_list - i).argmin()
new_seq.append(seq[idx_list[idx]])
return np.row_stack([int2vec(x, vec_dim) for x in new_seq])
def post_processing(self, raw_logits: torch.Tensor, spk_num: int, output_format: str = "speaker_turn"):
logits_idx = raw_logits.argmax(-1) # B, T, vocab_size -> B, T
# upsampling outputs to match inputs
ut = logits_idx.shape[1] * self.diar_model.encoder.time_ds_ratio
logits_idx = F.upsample(
logits_idx.unsqueeze(1).float(),
size=(ut, ),
mode="nearest",
).squeeze(1).long()
logits_idx = logits_idx[0].tolist()
pse_labels = [self.token_list[x] for x in logits_idx]
if output_format == "pse_labels":
return pse_labels, None
multi_labels = self.seq2arr(pse_labels, spk_num)[:, :spk_num] # remove padding speakers
multi_labels = self.smooth_multi_labels(multi_labels)
if output_format == "binary_labels":
return multi_labels, None
spk_list = ["spk{}".format(i + 1) for i in range(spk_num)]
spk_turns = self.calc_spk_turns(multi_labels, spk_list)
results = OrderedDict()
for spk, st, dur in spk_turns:
if spk not in results:
results[spk] = []
if dur > self.dur_threshold:
results[spk].append((st, st+dur))
# sort segments in start time ascending
for spk in results:
results[spk] = sorted(results[spk], key=lambda x: x[0])
return results, pse_labels
@torch.no_grad()
def __call__(
self,
speech: Union[torch.Tensor, np.ndarray],
profile: Union[torch.Tensor, np.ndarray],
output_format: str = "speaker_turn"
):
"""Inference
Args:
speech: Input speech data
profile: Speaker profiles
Returns:
diarization results for each speaker
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
if isinstance(profile, np.ndarray):
profile = torch.tensor(profile)
# data: (Nsamples,) -> (1, Nsamples)
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
profile = profile.unsqueeze(0).to(getattr(torch, self.dtype))
# lengths: (1,)
speech_lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
profile_lengths = profile.new_full([1], dtype=torch.long, fill_value=profile.size(1))
batch = {"speech": speech, "speech_lengths": speech_lengths,
"profile": profile, "profile_lengths": profile_lengths}
# a. To device
batch = to_device(batch, device=self.device)
logits = self.diar_model.prediction_forward(**batch)
results, pse_labels = self.post_processing(logits, profile.shape[1], output_format)
return results, pse_labels
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Speech2Xvector instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Xvector: Speech2Xvector instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2DiarizationSOND(**kwargs)