mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
87 lines
2.5 KiB
Python
87 lines
2.5 KiB
Python
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from funasr.models.encoder.sanm_encoder import SANMVadEncoder
|
|
from funasr.export.models.encoder.sanm_encoder import SANMVadEncoder as SANMVadEncoder_export
|
|
|
|
class VadRealtimeTransformer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
max_seq_len=512,
|
|
model_name='punc_model',
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
onnx = False
|
|
if "onnx" in kwargs:
|
|
onnx = kwargs["onnx"]
|
|
|
|
self.embed = model.embed
|
|
if isinstance(model.encoder, SANMVadEncoder):
|
|
self.encoder = SANMVadEncoder_export(model.encoder, onnx=onnx)
|
|
else:
|
|
assert False, "Only support samn encode."
|
|
# self.encoder = model.encoder
|
|
self.decoder = model.decoder
|
|
self.model_name = model_name
|
|
|
|
|
|
|
|
def forward(self, input: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
vad_indexes: torch.Tensor,
|
|
sub_masks: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, None]:
|
|
"""Compute loss value from buffer sequences.
|
|
|
|
Args:
|
|
input (torch.Tensor): Input ids. (batch, len)
|
|
hidden (torch.Tensor): Target ids. (batch, len)
|
|
|
|
"""
|
|
x = self.embed(input)
|
|
# mask = self._target_mask(input)
|
|
h, _ = self.encoder(x, text_lengths, vad_indexes, sub_masks)
|
|
y = self.decoder(h)
|
|
return y
|
|
|
|
def with_vad(self):
|
|
return True
|
|
|
|
def get_dummy_inputs(self):
|
|
length = 120
|
|
text_indexes = torch.randint(0, self.embed.num_embeddings, (1, length))
|
|
text_lengths = torch.tensor([length], dtype=torch.int32)
|
|
vad_mask = torch.ones(length, length, dtype=torch.float32)[None, None, :, :]
|
|
sub_masks = torch.ones(length, length, dtype=torch.float32)
|
|
sub_masks = torch.tril(sub_masks).type(torch.float32)
|
|
return (text_indexes, text_lengths, vad_mask, sub_masks[None, None, :, :])
|
|
|
|
def get_input_names(self):
|
|
return ['input', 'text_lengths', 'vad_mask', 'sub_masks']
|
|
|
|
def get_output_names(self):
|
|
return ['logits']
|
|
|
|
def get_dynamic_axes(self):
|
|
return {
|
|
'input': {
|
|
1: 'feats_length'
|
|
},
|
|
'vad_mask': {
|
|
2: 'feats_length1',
|
|
3: 'feats_length2'
|
|
},
|
|
'sub_masks': {
|
|
2: 'feats_length1',
|
|
3: 'feats_length2'
|
|
},
|
|
'logits': {
|
|
1: 'logits_length'
|
|
},
|
|
}
|