FunASR/funasr/export/models/language_models/embed.py
2023-07-07 16:53:16 +08:00

404 lines
14 KiB
Python

"""Positional Encoding Module."""
import math
import torch
import torch.nn as nn
from funasr.modules.embedding import (
LegacyRelPositionalEncoding, PositionalEncoding, RelPositionalEncoding,
ScaledPositionalEncoding, StreamPositionalEncoding)
from funasr.modules.subsampling import (
Conv2dSubsampling, Conv2dSubsampling2, Conv2dSubsampling6,
Conv2dSubsampling8)
from funasr.modules.subsampling_without_posenc import \
Conv2dSubsamplingWOPosEnc
from funasr.export.models.language_models.subsampling import (
OnnxConv2dSubsampling, OnnxConv2dSubsampling2, OnnxConv2dSubsampling6,
OnnxConv2dSubsampling8)
def get_pos_emb(pos_emb, max_seq_len=512, use_cache=True):
if isinstance(pos_emb, LegacyRelPositionalEncoding):
return OnnxLegacyRelPositionalEncoding(pos_emb, max_seq_len, use_cache)
elif isinstance(pos_emb, ScaledPositionalEncoding):
return OnnxScaledPositionalEncoding(pos_emb, max_seq_len, use_cache)
elif isinstance(pos_emb, RelPositionalEncoding):
return OnnxRelPositionalEncoding(pos_emb, max_seq_len, use_cache)
elif isinstance(pos_emb, PositionalEncoding):
return OnnxPositionalEncoding(pos_emb, max_seq_len, use_cache)
elif isinstance(pos_emb, StreamPositionalEncoding):
return OnnxStreamPositionalEncoding(pos_emb, max_seq_len, use_cache)
elif (isinstance(pos_emb, nn.Sequential) and len(pos_emb) == 0) or (
isinstance(pos_emb, Conv2dSubsamplingWOPosEnc)
):
return pos_emb
else:
raise ValueError("Embedding model is not supported.")
class Embedding(nn.Module):
def __init__(self, model, max_seq_len=512, use_cache=True):
super().__init__()
self.model = model
if not isinstance(model, nn.Embedding):
if isinstance(model, Conv2dSubsampling):
self.model = OnnxConv2dSubsampling(model)
self.model.out[-1] = get_pos_emb(model.out[-1], max_seq_len)
elif isinstance(model, Conv2dSubsampling2):
self.model = OnnxConv2dSubsampling2(model)
self.model.out[-1] = get_pos_emb(model.out[-1], max_seq_len)
elif isinstance(model, Conv2dSubsampling6):
self.model = OnnxConv2dSubsampling6(model)
self.model.out[-1] = get_pos_emb(model.out[-1], max_seq_len)
elif isinstance(model, Conv2dSubsampling8):
self.model = OnnxConv2dSubsampling8(model)
self.model.out[-1] = get_pos_emb(model.out[-1], max_seq_len)
else:
self.model[-1] = get_pos_emb(model[-1], max_seq_len)
def forward(self, x, mask=None):
if mask is None:
return self.model(x)
else:
return self.model(x, mask)
def _pre_hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""Perform pre-hook in load_state_dict for backward compatibility.
Note:
We saved self.pe until v.0.5.2 but we have omitted it later.
Therefore, we remove the item "pe" from `state_dict` for backward compatibility.
"""
k = prefix + "pe"
if k in state_dict:
state_dict.pop(k)
class OnnxPositionalEncoding(torch.nn.Module):
"""Positional encoding.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_seq_len (int): Maximum input length.
reverse (bool): Whether to reverse the input position. Only for
the class LegacyRelPositionalEncoding. We remove it in the current
class RelPositionalEncoding.
"""
def __init__(self, model, max_seq_len=512, reverse=False, use_cache=True):
"""Construct an PositionalEncoding object."""
super(OnnxPositionalEncoding, self).__init__()
self.d_model = model.d_model
self.reverse = reverse
self.max_seq_len = max_seq_len
self.xscale = math.sqrt(self.d_model)
self._register_load_state_dict_pre_hook(_pre_hook)
self.pe = model.pe
self.use_cache = use_cache
self.model = model
if self.use_cache:
self.extend_pe()
else:
self.div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
def extend_pe(self):
"""Reset the positional encodings."""
pe_length = len(self.pe[0])
if self.max_seq_len < pe_length:
self.pe = self.pe[:, : self.max_seq_len]
else:
self.model.extend_pe(torch.tensor(0.0).expand(1, self.max_seq_len))
self.pe = self.model.pe
def _add_pe(self, x):
"""Computes positional encoding"""
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
x = x * self.xscale
x[:, :, 0::2] += torch.sin(position * self.div_term)
x[:, :, 1::2] += torch.cos(position * self.div_term)
return x
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
if self.use_cache:
x = x * self.xscale + self.pe[:, : x.size(1)]
else:
x = self._add_pe(x)
return x
class OnnxScaledPositionalEncoding(OnnxPositionalEncoding):
"""Scaled positional encoding module.
See Sec. 3.2 https://arxiv.org/abs/1809.08895
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_seq_len (int): Maximum input length.
"""
def __init__(self, model, max_seq_len=512, use_cache=True):
"""Initialize class."""
super().__init__(model, max_seq_len, use_cache=use_cache)
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
def reset_parameters(self):
"""Reset parameters."""
self.alpha.data = torch.tensor(1.0)
def _add_pe(self, x):
"""Computes positional encoding"""
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
x = x * self.alpha
x[:, :, 0::2] += torch.sin(position * self.div_term)
x[:, :, 1::2] += torch.cos(position * self.div_term)
return x
def forward(self, x):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
if self.use_cache:
x = x + self.alpha * self.pe[:, : x.size(1)]
else:
x = self._add_pe(x)
return x
class OnnxLegacyRelPositionalEncoding(OnnxPositionalEncoding):
"""Relative positional encoding module (old version).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_seq_len (int): Maximum input length.
"""
def __init__(self, model, max_seq_len=512, use_cache=True):
"""Initialize class."""
super().__init__(model, max_seq_len, reverse=True, use_cache=use_cache)
def _get_pe(self, x):
"""Computes positional encoding"""
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
pe = torch.zeros(x.shape)
pe[:, :, 0::2] += torch.sin(position * self.div_term)
pe[:, :, 1::2] += torch.cos(position * self.div_term)
return pe
def forward(self, x):
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
x = x * self.xscale
if self.use_cache:
pos_emb = self.pe[:, : x.size(1)]
else:
pos_emb = self._get_pe(x)
return x, pos_emb
class OnnxRelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_seq_len (int): Maximum input length.
"""
def __init__(self, model, max_seq_len=512, use_cache=True):
"""Construct an PositionalEncoding object."""
super(OnnxRelPositionalEncoding, self).__init__()
self.d_model = model.d_model
self.xscale = math.sqrt(self.d_model)
self.pe = None
self.use_cache = use_cache
if self.use_cache:
self.extend_pe(torch.tensor(0.0).expand(1, max_seq_len))
else:
self.div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None and self.pe.size(1) >= x.size(1) * 2 - 1:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def _get_pe(self, x):
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
theta = (
torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) * self.div_term
)
pe_positive[:, 0::2] = torch.sin(theta)
pe_positive[:, 1::2] = torch.cos(theta)
pe_negative[:, 0::2] = -1 * torch.sin(theta)
pe_negative[:, 1::2] = torch.cos(theta)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
return torch.cat([pe_positive, pe_negative], dim=1)
def forward(self, x: torch.Tensor, use_cache=True):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
x = x * self.xscale
if self.use_cache:
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
]
else:
pos_emb = self._get_pe(x)
return x, pos_emb
class OnnxStreamPositionalEncoding(torch.nn.Module):
"""Streaming Positional encoding."""
def __init__(self, model, max_seq_len=5000, use_cache=True):
"""Construct an PositionalEncoding object."""
super(StreamPositionalEncoding, self).__init__()
self.use_cache = use_cache
self.d_model = model.d_model
self.xscale = model.xscale
self.pe = model.pe
self.use_cache = use_cache
self.max_seq_len = max_seq_len
if self.use_cache:
self.extend_pe()
else:
self.div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self):
"""Reset the positional encodings."""
pe_length = len(self.pe[0])
if self.max_seq_len < pe_length:
self.pe = self.pe[:, : self.max_seq_len]
else:
self.model.extend_pe(self.max_seq_len)
self.pe = self.model.pe
def _add_pe(self, x, start_idx):
position = torch.arange(start_idx, x.size(1), dtype=torch.float32).unsqueeze(1)
x = x * self.xscale
x[:, :, 0::2] += torch.sin(position * self.div_term)
x[:, :, 1::2] += torch.cos(position * self.div_term)
return x
def forward(self, x: torch.Tensor, start_idx: int = 0):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
if self.use_cache:
return x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)]
else:
return self._add_pe(x, start_idx)