FunASR/funasr/datasets/large_datasets/dataset.py
2022-11-26 21:56:51 +08:00

176 lines
5.8 KiB
Python

import os
import random
from functools import partial
import torch
import torch.distributed as dist
from kaldiio import ReadHelper
from torch.utils.data import IterableDataset
from funasr.datasets.large_datasets.datapipes.batch import MaxTokenBucketizerIterDataPipe
from funasr.datasets.large_datasets.datapipes.filter import FilterIterDataPipe
from funasr.datasets.large_datasets.datapipes.map import MapperIterDataPipe
from funasr.datasets.large_datasets.utils.filter import filter
from funasr.datasets.large_datasets.utils.padding import padding
from funasr.datasets.large_datasets.utils.tokenize import tokenize
def read_lists(list_file):
lists = []
with open(list_file, 'r', encoding='utf8') as fin:
for line in fin:
parts = line.strip()
lists.append(parts)
return lists
class AudioDataset(IterableDataset):
def __init__(self, scp_lists, data_names, data_types, shuffle=True, mode="train"):
self.scp_lists = scp_lists
self.data_names = data_names
self.data_types = data_types
self.shuffle = shuffle
self.mode = mode
self.epoch = -1
self.rank = 0
self.world_size = 1
self.worker_id = 0
self.num_workers = 1
def set_epoch(self, epoch):
self.epoch = epoch
def get_rank_data_list(self, data_index):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
if self.mode == "train":
if self.shuffle:
random.seed(self.epoch)
random.shuffle(data_index)
return data_index[self.rank::self.world_size]
return data_index
def get_worker_data_list(self, rank_data_index):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return rank_data_index[self.worker_id::self.num_workers]
def close_reader(self, reader_list):
for reader in reader_list:
reader.close()
def __iter__(self):
data_index = list(range(len(self.scp_lists)))
rank_data_index = self.get_rank_data_list(data_index)
worker_data_index = self.get_worker_data_list(rank_data_index)
for index in worker_data_index:
data = dict(scp=self.scp_lists[index])
assert 'scp' in data
scp = data['scp']
data_file_list = scp.strip().split()
data_name_list = self.data_names.split(",")
data_type_list = self.data_types.split(",")
for file in data_file_list:
assert os.path.exists(file), "{} not exists".format(file)
assert len(data_file_list) == len(data_name_list) == len(data_type_list), \
"The item number of data, data_names, data_types must be the same "
reader_list = []
for data_file, data_type in zip(data_file_list, data_type_list):
if data_type == "kaldi_ark":
ark_reader = ReadHelper('ark:{}'.format(data_file))
reader_list.append(ark_reader)
elif data_type == "text":
text_reader = open(data_file, "r")
reader_list.append(text_reader)
else:
raise TypeError("Data type {} is not supported".format(data_type))
for items in zip(*reader_list):
sample_dict = {}
for item, (data_name, data_type) in zip(items, zip(data_name_list, data_type_list)):
if data_type == "kaldi_ark":
key, mat = item
sample_dict[data_name] = mat
if data_name == "speech":
sample_dict["key"] = key
else:
text = item
sample_dict[data_name] = text.strip().split()[1:]
yield sample_dict
self.close_reader(reader_list)
def len_fn_example(data):
return len(data)
def len_fn_token(data):
assert "speech" in data
return data["speech"].shape[0]
def Dataset(data_list_file,
dict,
conf,
mode="train"):
scp_lists = read_lists(data_list_file)
shuffle = conf.get('shuffle', True)
data_names = conf.get("data_names", "speech,text")
data_types = conf.get("data_types", "kaldi_ark,text")
dataset = AudioDataset(scp_lists, data_names, data_types, shuffle=shuffle, mode=mode)
filter_conf = conf.get('filter_conf', {})
filter_fn = partial(filter, **filter_conf)
dataset = FilterIterDataPipe(dataset, fn=filter_fn)
vocab = {'vocab': dict}
tokenize_fn = partial(tokenize, **vocab)
dataset = MapperIterDataPipe(dataset, fn=tokenize_fn)
if shuffle:
buffer_conf = conf.get('shuffle_conf', {})
buffer_size = buffer_conf['shuffle_size']
sort_size = buffer_conf['sort_size']
else:
buffer_size = 0
sort_size = 1
batch_conf = conf.get('batch_conf', {})
batch_size = batch_conf['batch_size']
batch_type = batch_conf['batch_type']
assert batch_type in ["example", "token"]
if batch_type == 'example':
len_fn = len_fn_example
else:
len_fn = len_fn_token
dataset = MaxTokenBucketizerIterDataPipe(dataset,
batch_size=batch_size,
len_fn=len_fn,
buffer_size=buffer_size,
sort_size=sort_size)
dataset = MapperIterDataPipe(dataset, fn=padding)
return dataset