mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
137 lines
4.4 KiB
Python
137 lines
4.4 KiB
Python
# -*- encoding: utf-8 -*-
|
|
|
|
import os.path
|
|
from pathlib import Path
|
|
from typing import List, Union, Tuple
|
|
|
|
import copy
|
|
import librosa
|
|
import numpy as np
|
|
|
|
from .utils.utils import (ONNXRuntimeError,
|
|
OrtInferSession, get_logger,
|
|
read_yaml)
|
|
from .utils.frontend import WavFrontend
|
|
from .utils.e2e_vad import E2EVadModel
|
|
|
|
logging = get_logger()
|
|
|
|
|
|
class Fsmn_vad():
|
|
def __init__(self, model_dir: Union[str, Path] = None,
|
|
batch_size: int = 1,
|
|
device_id: Union[str, int] = "-1",
|
|
quantize: bool = False,
|
|
intra_op_num_threads: int = 4,
|
|
max_end_sil: int = None,
|
|
):
|
|
|
|
if not Path(model_dir).exists():
|
|
raise FileNotFoundError(f'{model_dir} does not exist.')
|
|
|
|
model_file = os.path.join(model_dir, 'model.onnx')
|
|
if quantize:
|
|
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
|
config_file = os.path.join(model_dir, 'vad.yaml')
|
|
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
|
config = read_yaml(config_file)
|
|
|
|
self.frontend = WavFrontend(
|
|
cmvn_file=cmvn_file,
|
|
**config['frontend_conf']
|
|
)
|
|
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
|
self.batch_size = batch_size
|
|
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
|
|
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
|
|
self.encoder_conf = config["encoder_conf"]
|
|
|
|
def prepare_cache(self, in_cache: list = []):
|
|
if len(in_cache) > 0:
|
|
return in_cache
|
|
fsmn_layers = self.encoder_conf["fsmn_layers"]
|
|
proj_dim = self.encoder_conf["proj_dim"]
|
|
lorder = self.encoder_conf["lorder"]
|
|
for i in range(fsmn_layers):
|
|
cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32)
|
|
in_cache.append(cache)
|
|
return in_cache
|
|
|
|
|
|
def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
|
waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq)
|
|
waveform_nums = len(waveform_list)
|
|
is_final = kwargs.get('kwargs', False)
|
|
|
|
asr_res = []
|
|
for beg_idx in range(0, waveform_nums, self.batch_size):
|
|
|
|
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
|
waveform = waveform_list[beg_idx:end_idx]
|
|
feats, feats_len = self.extract_feat(waveform)
|
|
param_dict = kwargs.get('param_dict', dict())
|
|
in_cache = param_dict.get('in_cache', list())
|
|
in_cache = self.prepare_cache(in_cache)
|
|
try:
|
|
inputs = [feats]
|
|
inputs.extend(in_cache)
|
|
scores, out_caches = self.infer(inputs)
|
|
param_dict['in_cache'] = out_caches
|
|
segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil)
|
|
|
|
except ONNXRuntimeError:
|
|
# logging.warning(traceback.format_exc())
|
|
logging.warning("input wav is silence or noise")
|
|
segments = ''
|
|
asr_res.append(segments)
|
|
|
|
return asr_res
|
|
|
|
def load_data(self,
|
|
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
|
def load_wav(path: str) -> np.ndarray:
|
|
waveform, _ = librosa.load(path, sr=fs)
|
|
return waveform
|
|
|
|
if isinstance(wav_content, np.ndarray):
|
|
return [wav_content]
|
|
|
|
if isinstance(wav_content, str):
|
|
return [load_wav(wav_content)]
|
|
|
|
if isinstance(wav_content, list):
|
|
return [load_wav(path) for path in wav_content]
|
|
|
|
raise TypeError(
|
|
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
|
|
|
def extract_feat(self,
|
|
waveform_list: List[np.ndarray]
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
feats, feats_len = [], []
|
|
for waveform in waveform_list:
|
|
speech, _ = self.frontend.fbank(waveform)
|
|
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
|
feats.append(feat)
|
|
feats_len.append(feat_len)
|
|
|
|
feats = self.pad_feats(feats, np.max(feats_len))
|
|
feats_len = np.array(feats_len).astype(np.int32)
|
|
return feats, feats_len
|
|
|
|
@staticmethod
|
|
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
|
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
|
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
|
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
|
|
|
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
|
feats = np.array(feat_res).astype(np.float32)
|
|
return feats
|
|
|
|
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
outputs = self.ort_infer(feats)
|
|
scores, out_caches = outputs[0], outputs[1:]
|
|
return scores, out_caches
|
|
|