FunASR/funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py
2023-03-29 13:20:27 +08:00

137 lines
4.4 KiB
Python

# -*- encoding: utf-8 -*-
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import copy
import librosa
import numpy as np
from .utils.utils import (ONNXRuntimeError,
OrtInferSession, get_logger,
read_yaml)
from .utils.frontend import WavFrontend
from .utils.e2e_vad import E2EVadModel
logging = get_logger()
class Fsmn_vad():
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
max_end_sil: int = None,
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
config_file = os.path.join(model_dir, 'vad.yaml')
cmvn_file = os.path.join(model_dir, 'vad.mvn')
config = read_yaml(config_file)
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
self.encoder_conf = config["encoder_conf"]
def prepare_cache(self, in_cache: list = []):
if len(in_cache) > 0:
return in_cache
fsmn_layers = self.encoder_conf["fsmn_layers"]
proj_dim = self.encoder_conf["proj_dim"]
lorder = self.encoder_conf["lorder"]
for i in range(fsmn_layers):
cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32)
in_cache.append(cache)
return in_cache
def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
is_final = kwargs.get('kwargs', False)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
waveform = waveform_list[beg_idx:end_idx]
feats, feats_len = self.extract_feat(waveform)
param_dict = kwargs.get('param_dict', dict())
in_cache = param_dict.get('in_cache', list())
in_cache = self.prepare_cache(in_cache)
try:
inputs = [feats]
inputs.extend(in_cache)
scores, out_caches = self.infer(inputs)
param_dict['in_cache'] = out_caches
segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil)
except ONNXRuntimeError:
# logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
segments = ''
asr_res.append(segments)
return asr_res
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveform_list: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer(feats)
scores, out_caches = outputs[0], outputs[1:]
return scores, out_caches