mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
118 lines
3.2 KiB
Python
118 lines
3.2 KiB
Python
from typing import Any
|
|
from typing import Dict
|
|
from typing import Union
|
|
from io import BytesIO
|
|
|
|
import logging
|
|
import torch
|
|
import torch.nn
|
|
import torch.optim
|
|
|
|
|
|
def filter_state_dict(
|
|
dst_state: Dict[str, Union[float, torch.Tensor]],
|
|
src_state: Dict[str, Union[float, torch.Tensor]],
|
|
):
|
|
"""Filter name, size mismatch instances between dicts.
|
|
|
|
Args:
|
|
dst_state: reference state dict for filtering
|
|
src_state: target state dict for filtering
|
|
|
|
"""
|
|
match_state = {}
|
|
for key, value in src_state.items():
|
|
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
|
|
match_state[key] = value
|
|
else:
|
|
if key not in dst_state:
|
|
logging.warning(
|
|
f"Filter out {key} from pretrained dict"
|
|
+ " because of name not found in target dict"
|
|
)
|
|
else:
|
|
logging.warning(
|
|
f"Filter out {key} from pretrained dict"
|
|
+ " because of size mismatch"
|
|
+ f"({dst_state[key].size()}-{src_state[key].size()})"
|
|
)
|
|
return match_state
|
|
|
|
def assigment_scope_map(dst_state: dict, src_state: dict, scope_map: str=None):
|
|
"""Compute the union of the current variables and checkpoint variables."""
|
|
import collections
|
|
import re
|
|
|
|
# current model variables
|
|
name_to_variable = collections.OrderedDict()
|
|
for name, var in dst_state.items():
|
|
name_to_variable[name] = var
|
|
|
|
scope_map_num = 0
|
|
if scope_map is not None:
|
|
scope_map = scope_map.split(",")
|
|
scope_map_num = len(scope_map) // 2
|
|
for scope_map_idx in range(scope_map_num):
|
|
scope_map_id = scope_map_idx * 2
|
|
logging.info('assignment_map from scope {} to {}'.format(scope_map[scope_map_id], scope_map[scope_map_id+1]))
|
|
|
|
assignment_map = {}
|
|
for name, var in src_state.items():
|
|
|
|
if scope_map:
|
|
for scope_map_idx in range(scope_map_num):
|
|
scope_map_id = scope_map_idx * 2
|
|
try:
|
|
idx = name.index(scope_map[scope_map_id])
|
|
new_name = scope_map[scope_map_id+1] + name[idx + len(scope_map[scope_map_id]):]
|
|
if new_name in name_to_variable:
|
|
assignment_map[name] = var
|
|
except:
|
|
continue
|
|
else:
|
|
if name in name_to_variable:
|
|
assignment_map[name] = var
|
|
|
|
return assignment_map
|
|
|
|
def load_pretrained_model(
|
|
path: str,
|
|
model: torch.nn.Module,
|
|
ignore_init_mismatch: bool,
|
|
map_location: str = "cpu",
|
|
oss_bucket=None,
|
|
scope_map=None,
|
|
excludes=None,
|
|
):
|
|
"""Load a model state and set it to the model.
|
|
|
|
Args:
|
|
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
|
|
|
|
Examples:
|
|
|
|
"""
|
|
|
|
obj = model
|
|
|
|
if oss_bucket is None:
|
|
src_state = torch.load(path, map_location=map_location)
|
|
else:
|
|
buffer = BytesIO(oss_bucket.get_object(path).read())
|
|
src_state = torch.load(buffer, map_location=map_location)
|
|
src_state = src_state["model"] if "model" in src_state else src_state
|
|
|
|
if excludes is not None:
|
|
for e in excludes.split(","):
|
|
src_state = {k: v for k, v in src_state.items() if not k.startswith(e)}
|
|
|
|
dst_state = obj.state_dict()
|
|
src_state = assigment_scope_map(dst_state, src_state, scope_map)
|
|
|
|
if ignore_init_mismatch:
|
|
src_state = filter_state_dict(dst_state, src_state)
|
|
|
|
logging.debug("Loaded src_state keys: {}".format(src_state.keys()))
|
|
logging.debug("Loaded dst_state keys: {}".format(dst_state.keys()))
|
|
# dst_state.update(src_state)
|
|
obj.load_state_dict(dst_state) |