FunASR/funasr/datasets/audio_datasets/index_ds.py
2024-01-15 20:34:47 +08:00

65 lines
2.1 KiB
Python

import json
import torch
import logging
import torch.distributed as dist
from funasr.register import tables
@tables.register("index_ds_classes", "IndexDSJsonl")
class IndexDSJsonl(torch.utils.data.Dataset):
def __init__(self, path):
super().__init__()
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
self.contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data["prompt"]
source = data["source"]
target = data["target"]
source_len = data["source_len"]
target_len = data["target_len"]
contents.append({"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
)
self.contents = []
total_num = len(contents)
try:
rank = dist.get_rank()
world_size = dist.get_world_size()
except:
rank = 0
world_size = 1
logging.warning("distributed is not initialized, only single shard")
num_per_rank = total_num // world_size
# rank = 0
# import ipdb; ipdb.set_trace()
self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
logging.info("in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(rank, len(self.contents), len(contents)))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
return self.contents[index]
def get_source_len(self, data_dict):
return data_dict["source_len"]
def get_target_len(self, data_dict):
return data_dict["target_len"] if "target_len" in data_dict else 0