FunASR/funasr/bin/train.py
2024-01-16 15:47:01 +08:00

182 lines
6.9 KiB
Python

import os
import sys
import torch
import hydra
import logging
import argparse
from io import BytesIO
import torch.distributed as dist
from collections.abc import Sequence
from omegaconf import DictConfig, OmegaConf
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from funasr.register import tables
from funasr.optimizers import optim_classes
from funasr.train_utils.trainer import Trainer
from funasr.schedulers import scheduler_classes
from funasr.train_utils.initialize import initialize
from funasr.download.download_from_hub import download_model
from funasr.models.lora.utils import mark_only_lora_as_trainable
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.train_utils.load_pretrained_model import load_pretrained_model
# from funasr.tokenizer.build_tokenizer import build_tokenizer
# from funasr.tokenizer.token_id_converter import TokenIDConverter
# from funasr.tokenizer.funtoken import build_tokenizer
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
if kwargs.get("debug", False):
import pdb; pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)
main(**kwargs)
def main(**kwargs):
# preprocess_config(kwargs)
# import pdb; pdb.set_trace()
# set random seed
tables.print()
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get("cudnn_enabled", torch.backends.cudnn.enabled)
torch.backends.cudnn.benchmark = kwargs.get("cudnn_benchmark", torch.backends.cudnn.benchmark)
torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)
local_rank = int(os.environ.get('LOCAL_RANK', 0))
# Check if we are using DDP or FSDP
use_ddp = 'WORLD_SIZE' in os.environ and int(os.environ["WORLD_SIZE"]) > 1
use_fsdp = kwargs.get("use_fsdp", None)
if use_ddp or use_fsdp:
dist.init_process_group(backend=kwargs.get("backend", "nccl"), init_method='env://')
torch.cuda.set_device(local_rank)
# save config.yaml
if (use_ddp or use_fsdp) and dist.get_rank() == 0 or not (use_ddp or use_fsdp) and local_rank == 0:
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
logging.info("config.yaml is saved to: %s", yaml_file)
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
# build frontend if frontend is none None
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend)
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# import pdb;
# pdb.set_trace()
# build model
model_class = tables.model_classes.get(kwargs["model"])
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list))
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
if not isinstance(init_param, (list, tuple)):
init_param = (init_param,)
logging.info("init_param is not None: %s", init_param)
for p in init_param:
logging.info(f"Loading pretrained params from {p}")
load_pretrained_model(
model=model,
path=p,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", None),
excludes=kwargs.get("excludes", None),
)
else:
initialize(model, kwargs.get("init", "kaiming_normal"))
# freeze_param
freeze_param = kwargs.get("freeze_param", None)
if freeze_param is not None:
freeze_param = eval(freeze_param)
if isinstance(freeze_param, Sequence):
freeze_param = (freeze_param,)
logging.info("freeze_param is not None: %s", freeze_param)
for t in freeze_param:
for k, p in model.named_parameters():
if k.startswith(t + ".") or k == t:
logging.info(f"Setting {k}.requires_grad = False")
p.requires_grad = False
if use_ddp:
model = model.cuda(local_rank)
model = DDP(model, device_ids=[local_rank],
find_unused_parameters=kwargs.get("train_conf", {}).get("find_unused_parameters", False))
elif use_fsdp:
model = FSDP(model).cuda(local_rank)
else:
model = model.to(device=kwargs.get("device", "cuda"))
# optim
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
# import pdb;
# pdb.set_trace()
# dataset
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, **kwargs.get("dataset_conf"))
# dataloader
batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "DynamicBatchLocalShuffleSampler")
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
if batch_sampler is not None:
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
dataloader_tr = torch.utils.data.DataLoader(dataset_tr,
collate_fn=dataset_tr.collator,
batch_sampler=batch_sampler,
num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
pin_memory=True)
trainer = Trainer(
model=model,
optim=optim,
scheduler=scheduler,
dataloader_train=dataloader_tr,
dataloader_val=None,
local_rank=local_rank,
use_ddp=use_ddp,
use_fsdp=use_fsdp,
**kwargs.get("train_conf"),
)
trainer.run()
if use_ddp or use_fsdp:
torch.distributed.destroy_process_group()
if __name__ == "__main__":
main_hydra()