mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
297 lines
11 KiB
Python
297 lines
11 KiB
Python
import os
|
|
import torch
|
|
import random
|
|
import logging
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from typing import Union, Dict, List
|
|
from funasr.export.models import get_model
|
|
from funasr.utils.types import str2bool, str2triple_str
|
|
# torch_version = float(".".join(torch.__version__.split(".")[:2]))
|
|
# assert torch_version > 1.9
|
|
|
|
class ModelExport:
|
|
def __init__(
|
|
self,
|
|
cache_dir: Union[Path, str] = None,
|
|
onnx: bool = True,
|
|
device: str = "cpu",
|
|
quant: bool = True,
|
|
fallback_num: int = 0,
|
|
audio_in: str = None,
|
|
calib_num: int = 200,
|
|
model_revision: str = None,
|
|
):
|
|
self.set_all_random_seed(0)
|
|
|
|
self.cache_dir = cache_dir
|
|
self.export_config = dict(
|
|
feats_dim=560,
|
|
onnx=False,
|
|
)
|
|
|
|
self.onnx = onnx
|
|
self.device = device
|
|
self.quant = quant
|
|
self.fallback_num = fallback_num
|
|
self.frontend = None
|
|
self.audio_in = audio_in
|
|
self.calib_num = calib_num
|
|
self.model_revision = model_revision
|
|
|
|
|
|
def _export(
|
|
self,
|
|
model,
|
|
tag_name: str = None,
|
|
verbose: bool = False,
|
|
):
|
|
|
|
export_dir = self.cache_dir
|
|
os.makedirs(export_dir, exist_ok=True)
|
|
|
|
# export encoder1
|
|
self.export_config["model_name"] = "model"
|
|
model = get_model(
|
|
model,
|
|
self.export_config,
|
|
)
|
|
if isinstance(model, List):
|
|
for m in model:
|
|
m.eval()
|
|
if self.onnx:
|
|
self._export_onnx(m, verbose, export_dir)
|
|
else:
|
|
self._export_torchscripts(m, verbose, export_dir)
|
|
print("output dir: {}".format(export_dir))
|
|
else:
|
|
model.eval()
|
|
# self._export_onnx(model, verbose, export_dir)
|
|
if self.onnx:
|
|
self._export_onnx(model, verbose, export_dir)
|
|
else:
|
|
self._export_torchscripts(model, verbose, export_dir)
|
|
print("output dir: {}".format(export_dir))
|
|
|
|
|
|
def _torch_quantize(self, model):
|
|
def _run_calibration_data(m):
|
|
# using dummy inputs for a example
|
|
if self.audio_in is not None:
|
|
feats, feats_len = self.load_feats(self.audio_in)
|
|
for i, (feat, len) in enumerate(zip(feats, feats_len)):
|
|
with torch.no_grad():
|
|
m(feat, len)
|
|
else:
|
|
dummy_input = model.get_dummy_inputs()
|
|
m(*dummy_input)
|
|
|
|
|
|
from torch_quant.module import ModuleFilter
|
|
from torch_quant.quantizer import Backend, Quantizer
|
|
from funasr.export.models.modules.decoder_layer import DecoderLayerSANM
|
|
from funasr.export.models.modules.encoder_layer import EncoderLayerSANM
|
|
module_filter = ModuleFilter(include_classes=[EncoderLayerSANM, DecoderLayerSANM])
|
|
module_filter.exclude_op_types = [torch.nn.Conv1d]
|
|
quantizer = Quantizer(
|
|
module_filter=module_filter,
|
|
backend=Backend.FBGEMM,
|
|
)
|
|
model.eval()
|
|
calib_model = quantizer.calib(model)
|
|
_run_calibration_data(calib_model)
|
|
if self.fallback_num > 0:
|
|
# perform automatic mixed precision quantization
|
|
amp_model = quantizer.amp(model)
|
|
_run_calibration_data(amp_model)
|
|
quantizer.fallback(amp_model, num=self.fallback_num)
|
|
print('Fallback layers:')
|
|
print('\n'.join(quantizer.module_filter.exclude_names))
|
|
quant_model = quantizer.quantize(model)
|
|
return quant_model
|
|
|
|
|
|
def _export_torchscripts(self, model, verbose, path, enc_size=None):
|
|
if enc_size:
|
|
dummy_input = model.get_dummy_inputs(enc_size)
|
|
else:
|
|
dummy_input = model.get_dummy_inputs()
|
|
|
|
if self.device == 'cuda':
|
|
model = model.cuda()
|
|
dummy_input = tuple([i.cuda() for i in dummy_input])
|
|
|
|
# model_script = torch.jit.script(model)
|
|
model_script = torch.jit.trace(model, dummy_input)
|
|
model_script.save(os.path.join(path, f'{model.model_name}.torchscripts'))
|
|
|
|
if self.quant:
|
|
quant_model = self._torch_quantize(model)
|
|
model_script = torch.jit.trace(quant_model, dummy_input)
|
|
model_script.save(os.path.join(path, f'{model.model_name}_quant.torchscripts'))
|
|
|
|
|
|
def set_all_random_seed(self, seed: int):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.random.manual_seed(seed)
|
|
|
|
def parse_audio_in(self, audio_in):
|
|
|
|
wav_list, name_list = [], []
|
|
if audio_in.endswith(".scp"):
|
|
f = open(audio_in, 'r')
|
|
lines = f.readlines()[:self.calib_num]
|
|
for line in lines:
|
|
name, path = line.strip().split()
|
|
name_list.append(name)
|
|
wav_list.append(path)
|
|
else:
|
|
wav_list = [audio_in,]
|
|
name_list = ["test",]
|
|
return wav_list, name_list
|
|
|
|
def load_feats(self, audio_in: str = None):
|
|
import torchaudio
|
|
|
|
wav_list, name_list = self.parse_audio_in(audio_in)
|
|
feats = []
|
|
feats_len = []
|
|
for line in wav_list:
|
|
path = line.strip()
|
|
waveform, sampling_rate = torchaudio.load(path)
|
|
if sampling_rate != self.frontend.fs:
|
|
waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
|
new_freq=self.frontend.fs)(waveform)
|
|
fbank, fbank_len = self.frontend(waveform, [waveform.size(1)])
|
|
feats.append(fbank)
|
|
feats_len.append(fbank_len)
|
|
return feats, feats_len
|
|
|
|
def export(self,
|
|
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
|
mode: str = None,
|
|
):
|
|
|
|
model_dir = tag_name
|
|
if model_dir.startswith('damo'):
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
model_dir = snapshot_download(model_dir, cache_dir=self.cache_dir, revision=self.model_revision)
|
|
self.cache_dir = model_dir
|
|
|
|
if mode is None:
|
|
import json
|
|
json_file = os.path.join(model_dir, 'configuration.json')
|
|
with open(json_file, 'r') as f:
|
|
config_data = json.load(f)
|
|
if config_data['task'] == "punctuation":
|
|
mode = config_data['model']['punc_model_config']['mode']
|
|
else:
|
|
mode = config_data['model']['model_config']['mode']
|
|
if mode.startswith('paraformer'):
|
|
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
|
config = os.path.join(model_dir, 'config.yaml')
|
|
model_file = os.path.join(model_dir, 'model.pb')
|
|
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
|
model, asr_train_args = ASRTask.build_model_from_file(
|
|
config, model_file, cmvn_file, 'cpu'
|
|
)
|
|
self.frontend = model.frontend
|
|
self.export_config["feats_dim"] = 560
|
|
elif mode.startswith('offline'):
|
|
from funasr.tasks.vad import VADTask
|
|
config = os.path.join(model_dir, 'vad.yaml')
|
|
model_file = os.path.join(model_dir, 'vad.pb')
|
|
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
|
|
|
model, vad_infer_args = VADTask.build_model_from_file(
|
|
config, model_file, cmvn_file=cmvn_file, device='cpu'
|
|
)
|
|
self.export_config["feats_dim"] = 400
|
|
self.frontend = model.frontend
|
|
elif mode.startswith('punc'):
|
|
from funasr.tasks.punctuation import PunctuationTask as PUNCTask
|
|
punc_train_config = os.path.join(model_dir, 'config.yaml')
|
|
punc_model_file = os.path.join(model_dir, 'punc.pb')
|
|
model, punc_train_args = PUNCTask.build_model_from_file(
|
|
punc_train_config, punc_model_file, 'cpu'
|
|
)
|
|
elif mode.startswith('punc_VadRealtime'):
|
|
from funasr.tasks.punctuation import PunctuationTask as PUNCTask
|
|
punc_train_config = os.path.join(model_dir, 'config.yaml')
|
|
punc_model_file = os.path.join(model_dir, 'punc.pb')
|
|
model, punc_train_args = PUNCTask.build_model_from_file(
|
|
punc_train_config, punc_model_file, 'cpu'
|
|
)
|
|
self._export(model, tag_name)
|
|
|
|
|
|
def _export_onnx(self, model, verbose, path, enc_size=None):
|
|
if enc_size:
|
|
dummy_input = model.get_dummy_inputs(enc_size)
|
|
else:
|
|
dummy_input = model.get_dummy_inputs()
|
|
|
|
# model_script = torch.jit.script(model)
|
|
model_script = model #torch.jit.trace(model)
|
|
model_path = os.path.join(path, f'{model.model_name}.onnx')
|
|
# if not os.path.exists(model_path):
|
|
torch.onnx.export(
|
|
model_script,
|
|
dummy_input,
|
|
model_path,
|
|
verbose=verbose,
|
|
opset_version=14,
|
|
input_names=model.get_input_names(),
|
|
output_names=model.get_output_names(),
|
|
dynamic_axes=model.get_dynamic_axes()
|
|
)
|
|
|
|
if self.quant:
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
import onnx
|
|
quant_model_path = os.path.join(path, f'{model.model_name}_quant.onnx')
|
|
if not os.path.exists(quant_model_path):
|
|
onnx_model = onnx.load(model_path)
|
|
nodes = [n.name for n in onnx_model.graph.node]
|
|
nodes_to_exclude = [m for m in nodes if 'output' in m or 'bias_encoder' in m or 'bias_decoder' in m]
|
|
quantize_dynamic(
|
|
model_input=model_path,
|
|
model_output=quant_model_path,
|
|
op_types_to_quantize=['MatMul'],
|
|
per_channel=True,
|
|
reduce_range=False,
|
|
weight_type=QuantType.QUInt8,
|
|
nodes_to_exclude=nodes_to_exclude,
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
# parser.add_argument('--model-name', type=str, required=True)
|
|
parser.add_argument('--model-name', type=str, action="append", required=True, default=[])
|
|
parser.add_argument('--export-dir', type=str, required=True)
|
|
parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]')
|
|
parser.add_argument('--device', type=str, default='cpu', help='["cpu", "cuda"]')
|
|
parser.add_argument('--quantize', type=str2bool, default=False, help='export quantized model')
|
|
parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number')
|
|
parser.add_argument('--audio_in', type=str, default=None, help='["wav", "wav.scp"]')
|
|
parser.add_argument('--calib_num', type=int, default=200, help='calib max num')
|
|
parser.add_argument('--model_revision', type=str, default=None, help='model_revision')
|
|
args = parser.parse_args()
|
|
|
|
export_model = ModelExport(
|
|
cache_dir=args.export_dir,
|
|
onnx=args.type == 'onnx',
|
|
device=args.device,
|
|
quant=args.quantize,
|
|
fallback_num=args.fallback_num,
|
|
audio_in=args.audio_in,
|
|
calib_num=args.calib_num,
|
|
model_revision=args.model_revision,
|
|
)
|
|
for model_name in args.model_name:
|
|
print("export model: {}".format(model_name))
|
|
export_model.export(model_name)
|