mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
372 lines
15 KiB
Python
372 lines
15 KiB
Python
import logging
|
|
from contextlib import contextmanager
|
|
from distutils.version import LooseVersion
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.models.ctc import CTC
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.modules.add_sos_eos import add_sos_eos
|
|
from funasr.modules.nets_utils import make_pad_mask, pad_list
|
|
from funasr.modules.nets_utils import th_accuracy
|
|
from funasr.torch_utils.device_funcs import force_gatherable
|
|
from funasr.models.e2e_asr_paraformer import Paraformer
|
|
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
from torch.cuda.amp import autocast
|
|
else:
|
|
# Nothing to do if torch<1.6.0
|
|
@contextmanager
|
|
def autocast(enabled=True):
|
|
yield
|
|
|
|
|
|
class NeatContextualParaformer(Paraformer):
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
token_list: Union[Tuple[str, ...], List[str]],
|
|
frontend: Optional[AbsFrontend],
|
|
specaug: Optional[AbsSpecAug],
|
|
normalize: Optional[AbsNormalize],
|
|
encoder: AbsEncoder,
|
|
decoder: AbsDecoder,
|
|
ctc: CTC,
|
|
ctc_weight: float = 0.5,
|
|
interctc_weight: float = 0.0,
|
|
ignore_id: int = -1,
|
|
blank_id: int = 0,
|
|
sos: int = 1,
|
|
eos: int = 2,
|
|
lsm_weight: float = 0.0,
|
|
length_normalized_loss: bool = False,
|
|
report_cer: bool = True,
|
|
report_wer: bool = True,
|
|
sym_space: str = "<space>",
|
|
sym_blank: str = "<blank>",
|
|
extract_feats_in_collect_stats: bool = True,
|
|
predictor = None,
|
|
predictor_weight: float = 0.0,
|
|
predictor_bias: int = 0,
|
|
sampling_ratio: float = 0.2,
|
|
target_buffer_length: int = -1,
|
|
inner_dim: int = 256,
|
|
bias_encoder_type: str = 'lstm',
|
|
use_decoder_embedding: bool = False,
|
|
crit_attn_weight: float = 0.0,
|
|
crit_attn_smooth: float = 0.0,
|
|
bias_encoder_dropout_rate: float = 0.0,
|
|
preencoder: Optional[AbsPreEncoder] = None,
|
|
postencoder: Optional[AbsPostEncoder] = None,
|
|
):
|
|
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
|
|
assert 0.0 <= interctc_weight < 1.0, interctc_weight
|
|
|
|
super().__init__(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
ctc_weight=ctc_weight,
|
|
interctc_weight=interctc_weight,
|
|
ignore_id=ignore_id,
|
|
blank_id=blank_id,
|
|
sos=sos,
|
|
eos=eos,
|
|
lsm_weight=lsm_weight,
|
|
length_normalized_loss=length_normalized_loss,
|
|
report_cer=report_cer,
|
|
report_wer=report_wer,
|
|
sym_space=sym_space,
|
|
sym_blank=sym_blank,
|
|
extract_feats_in_collect_stats=extract_feats_in_collect_stats,
|
|
predictor=predictor,
|
|
predictor_weight=predictor_weight,
|
|
predictor_bias=predictor_bias,
|
|
sampling_ratio=sampling_ratio,
|
|
)
|
|
|
|
if bias_encoder_type == 'lstm':
|
|
logging.warning("enable bias encoder sampling and contextual training")
|
|
self.bias_encoder = torch.nn.LSTM(inner_dim, inner_dim, 1, batch_first=True, dropout=bias_encoder_dropout_rate)
|
|
self.bias_embed = torch.nn.Embedding(vocab_size, inner_dim)
|
|
elif bias_encoder_type == 'mean':
|
|
logging.warning("enable bias encoder sampling and contextual training")
|
|
self.bias_embed = torch.nn.Embedding(vocab_size, inner_dim)
|
|
else:
|
|
logging.error("Unsupport bias encoder type: {}".format(bias_encoder_type))
|
|
|
|
self.target_buffer_length = target_buffer_length
|
|
if self.target_buffer_length > 0:
|
|
self.hotword_buffer = None
|
|
self.length_record = []
|
|
self.current_buffer_length = 0
|
|
self.use_decoder_embedding = use_decoder_embedding
|
|
self.crit_attn_weight = crit_attn_weight
|
|
if self.crit_attn_weight > 0:
|
|
self.attn_loss = torch.nn.L1Loss()
|
|
self.crit_attn_smooth = crit_attn_smooth
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
hotword_pad: torch.Tensor,
|
|
hotword_lengths: torch.Tensor,
|
|
ideal_attn: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Frontend + Encoder + Decoder + Calc loss
|
|
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
assert text_lengths.dim() == 1, text_lengths.shape
|
|
# Check that batch_size is unified
|
|
assert (
|
|
speech.shape[0]
|
|
== speech_lengths.shape[0]
|
|
== text.shape[0]
|
|
== text_lengths.shape[0]
|
|
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
|
|
batch_size = speech.shape[0]
|
|
self.step_cur += 1
|
|
# for data-parallel
|
|
text = text[:, : text_lengths.max()]
|
|
speech = speech[:, :speech_lengths.max()]
|
|
|
|
# 1. Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
intermediate_outs = None
|
|
if isinstance(encoder_out, tuple):
|
|
intermediate_outs = encoder_out[1]
|
|
encoder_out = encoder_out[0]
|
|
|
|
loss_att, acc_att, cer_att, wer_att = None, None, None, None
|
|
loss_ctc, cer_ctc = None, None
|
|
loss_pre = None
|
|
loss_ideal = None
|
|
|
|
stats = dict()
|
|
|
|
# 1. CTC branch
|
|
if self.ctc_weight != 0.0:
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# Collect CTC branch stats
|
|
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
|
stats["cer_ctc"] = cer_ctc
|
|
|
|
# Intermediate CTC (optional)
|
|
loss_interctc = 0.0
|
|
if self.interctc_weight != 0.0 and intermediate_outs is not None:
|
|
for layer_idx, intermediate_out in intermediate_outs:
|
|
# we assume intermediate_out has the same length & padding
|
|
# as those of encoder_out
|
|
loss_ic, cer_ic = self._calc_ctc_loss(
|
|
intermediate_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
loss_interctc = loss_interctc + loss_ic
|
|
|
|
# Collect Intermedaite CTC stats
|
|
stats["loss_interctc_layer{}".format(layer_idx)] = (
|
|
loss_ic.detach() if loss_ic is not None else None
|
|
)
|
|
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
|
|
|
|
loss_interctc = loss_interctc / len(intermediate_outs)
|
|
|
|
# calculate whole encoder loss
|
|
loss_ctc = (1 - self.interctc_weight) * loss_ctc + self.interctc_weight * loss_interctc
|
|
|
|
# 2b. Attention decoder branch
|
|
if self.ctc_weight != 1.0:
|
|
loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal = self._calc_att_clas_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths, hotword_pad, hotword_lengths, ideal_attn
|
|
)
|
|
|
|
# 3. CTC-Att loss definition
|
|
if self.ctc_weight == 0.0:
|
|
loss = loss_att + loss_pre * self.predictor_weight
|
|
elif self.ctc_weight == 1.0:
|
|
loss = loss_ctc
|
|
else:
|
|
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight
|
|
|
|
if loss_ideal is not None:
|
|
loss = loss + loss_ideal * self.crit_attn_weight
|
|
stats["loss_ideal"] = loss_ideal.detach().cpu()
|
|
|
|
# Collect Attn branch stats
|
|
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
|
stats["acc"] = acc_att
|
|
stats["cer"] = cer_att
|
|
stats["wer"] = wer_att
|
|
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
|
|
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def _calc_att_clas_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
hotword_pad: torch.Tensor,
|
|
hotword_lengths: torch.Tensor,
|
|
ideal_attn: torch.Tensor,
|
|
):
|
|
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
|
|
encoder_out.device)
|
|
if self.predictor_bias == 1:
|
|
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
|
|
ys_pad_lens = ys_pad_lens + self.predictor_bias
|
|
pre_acoustic_embeds, pre_token_length, _, _ = self.predictor(encoder_out, ys_pad, encoder_out_mask,
|
|
ignore_id=self.ignore_id)
|
|
|
|
# -1. bias encoder
|
|
if self.use_decoder_embedding:
|
|
hw_embed = self.decoder.embed(hotword_pad)
|
|
else:
|
|
hw_embed = self.bias_embed(hotword_pad)
|
|
hw_embed, (_, _) = self.bias_encoder(hw_embed)
|
|
_ind = np.arange(0, hotword_pad.shape[0]).tolist()
|
|
selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
|
|
contextual_info = selected.squeeze(0).repeat(ys_pad.shape[0], 1, 1).to(ys_pad.device)
|
|
|
|
# 0. sampler
|
|
decoder_out_1st = None
|
|
if self.sampling_ratio > 0.0:
|
|
if self.step_cur < 2:
|
|
logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
|
|
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
|
|
pre_acoustic_embeds, contextual_info)
|
|
else:
|
|
if self.step_cur < 2:
|
|
logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
|
|
sematic_embeds = pre_acoustic_embeds
|
|
|
|
# 1. Forward decoder
|
|
decoder_outs = self.decoder(
|
|
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=contextual_info
|
|
)
|
|
decoder_out, _ = decoder_outs[0], decoder_outs[1]
|
|
'''
|
|
if self.crit_attn_weight > 0 and attn.shape[-1] > 1:
|
|
ideal_attn = ideal_attn + self.crit_attn_smooth / (self.crit_attn_smooth + 1.0)
|
|
attn_non_blank = attn[:,:,:,:-1]
|
|
ideal_attn_non_blank = ideal_attn[:,:,:-1]
|
|
loss_ideal = self.attn_loss(attn_non_blank.max(1)[0], ideal_attn_non_blank.to(attn.device))
|
|
else:
|
|
loss_ideal = None
|
|
'''
|
|
loss_ideal = None
|
|
|
|
if decoder_out_1st is None:
|
|
decoder_out_1st = decoder_out
|
|
# 2. Compute attention loss
|
|
loss_att = self.criterion_att(decoder_out, ys_pad)
|
|
acc_att = th_accuracy(
|
|
decoder_out_1st.view(-1, self.vocab_size),
|
|
ys_pad,
|
|
ignore_label=self.ignore_id,
|
|
)
|
|
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
|
|
|
|
# Compute cer/wer using attention-decoder
|
|
if self.training or self.error_calculator is None:
|
|
cer_att, wer_att = None, None
|
|
else:
|
|
ys_hat = decoder_out_1st.argmax(dim=-1)
|
|
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
|
|
|
|
return loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal
|
|
|
|
def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, contextual_info):
|
|
|
|
tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device)
|
|
ys_pad = ys_pad * tgt_mask[:, :, 0]
|
|
if self.share_embedding:
|
|
ys_pad_embed = self.decoder.output_layer.weight[ys_pad]
|
|
else:
|
|
ys_pad_embed = self.decoder.embed(ys_pad)
|
|
with torch.no_grad():
|
|
decoder_outs = self.decoder(
|
|
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, contextual_info=contextual_info
|
|
)
|
|
decoder_out, _ = decoder_outs[0], decoder_outs[1]
|
|
pred_tokens = decoder_out.argmax(-1)
|
|
nonpad_positions = ys_pad.ne(self.ignore_id)
|
|
seq_lens = (nonpad_positions).sum(1)
|
|
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
|
|
input_mask = torch.ones_like(nonpad_positions)
|
|
bsz, seq_len = ys_pad.size()
|
|
for li in range(bsz):
|
|
target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long()
|
|
if target_num > 0:
|
|
input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].to(pre_acoustic_embeds.device), value=0)
|
|
input_mask = input_mask.eq(1)
|
|
input_mask = input_mask.masked_fill(~nonpad_positions, False)
|
|
input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device)
|
|
|
|
sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill(
|
|
input_mask_expand_dim, 0)
|
|
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
|
|
|
|
def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list=None, clas_scale=1.0):
|
|
if hw_list is None:
|
|
hw_list = [torch.Tensor([1]).long().to(encoder_out.device)] # empty hotword list
|
|
hw_list_pad = pad_list(hw_list, 0)
|
|
if self.use_decoder_embedding:
|
|
hw_embed = self.decoder.embed(hw_list_pad)
|
|
else:
|
|
hw_embed = self.bias_embed(hw_list_pad)
|
|
hw_embed, (h_n, _) = self.bias_encoder(hw_embed)
|
|
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
|
|
else:
|
|
hw_lengths = [len(i) for i in hw_list]
|
|
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(encoder_out.device)
|
|
if self.use_decoder_embedding:
|
|
hw_embed = self.decoder.embed(hw_list_pad)
|
|
else:
|
|
hw_embed = self.bias_embed(hw_list_pad)
|
|
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hw_lengths, batch_first=True,
|
|
enforce_sorted=False)
|
|
_, (h_n, _) = self.bias_encoder(hw_embed)
|
|
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
|
|
|
|
decoder_outs = self.decoder(
|
|
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=hw_embed, clas_scale=clas_scale
|
|
)
|
|
decoder_out = decoder_outs[0]
|
|
decoder_out = torch.log_softmax(decoder_out, dim=-1)
|
|
return decoder_out, ys_pad_lens
|