| .. | ||
| proto | ||
| .gitignore | ||
| grpc_client.py | ||
| grpc_main_client_mic.py | ||
| grpc_main_client.py | ||
| grpc_main_server.py | ||
| grpc_server.py | ||
| paraformer_pb2_grpc.py | ||
| paraformer_pb2.py | ||
| Readme.md | ||
| requirements_client.txt | ||
| requirements_server.txt | ||
Using paraformer with grpc
We can send streaming audio data to server in real-time with grpc client every 10 ms e.g., and get transcribed text when stop speaking. The audio data is in streaming, the asr inference process is in offline.
For the Server
Prepare server environment
Backend is modelscope pipeline (default)
Install the modelscope and funasr
pip install "modelscope[audio_asr]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install --editable ./
Install the requirements
cd funasr/runtime/python/grpc
pip install -r requirements_server.txt
Backend is funasr_onnx (optional)
Install funasr_onnx.
pip install funasr_onnx -i https://pypi.Python.org/simple
Export the model, more details ref to export docs.
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True
Generate protobuf file
Run on server, the two generated pb files are both used for server and client
# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated,
# regenerate it only when you make changes to ./proto/paraformer.proto file.
python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto
Start grpc server
# Start server.
python grpc_main_server.py --port 10095 --backend pipeline
If you want run server with onnxruntime, please set backend and onnx_dir.
# Start server.
python grpc_main_server.py --port 10095 --backend onnxruntime --onnx_dir /models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
For the client
Install the requirements
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/grpc
pip install -r requirements_client.txt
Generate protobuf file
Run on server, the two generated pb files are both used for server and client
# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated,
# regenerate it only when you make changes to ./proto/paraformer.proto file.
python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto
Start grpc client
# Start client.
python grpc_main_client_mic.py --host 127.0.0.1 --port 10095
Workflow in desgin
Reference
We borrow from or refer to some code as:
1)https://github.com/wenet-e2e/wenet/tree/main/runtime/core/grpc
2)https://github.com/Open-Speech-EkStep/inference_service/blob/main/realtime_inference_service.py