FunASR/funasr/models/e2e_diar_eend_ola.py
2023-03-13 16:16:57 +08:00

218 lines
8.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
from typeguard import check_argument_types
from funasr.modules.eend_ola.encoder import TransformerEncoder
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
from funasr.modules.eend_ola.utils.power import generate_mapping_dict
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.train.abs_espnet_model import AbsESPnetModel
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
pass
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
class DiarEENDOLAModel(AbsESPnetModel):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
encoder: TransformerEncoder,
eda: EncoderDecoderAttractor,
n_units: int = 256,
max_n_speaker: int = 8,
attractor_loss_weight: float = 1.0,
mapping_dict=None,
**kwargs,
):
assert check_argument_types()
super().__init__()
self.encoder = encoder
self.eda = eda
self.attractor_loss_weight = attractor_loss_weight
self.max_n_speaker = max_n_speaker
if mapping_dict is None:
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
self.mapping_dict = mapping_dict
# PostNet
self.PostNet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True)
self.output_layer = nn.Linear(n_units, mapping_dict['oov'] + 1)
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
# for data-parallel
text = text[:, : text_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
# Collect total loss stats
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def estimate_sequential(self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
n_speakers: int,
shuffle: bool,
threshold: float,
**kwargs):
speech = [s[:s_len] for s, s_len in zip(speech, speech_lengths)]
emb = self.forward_core(speech) # list, [(T1, C1), ..., (T1, C1)]
if shuffle:
orders = [np.arange(e.shape[0]) for e in emb]
for order in orders:
np.random.shuffle(order)
# e[order]: shuffle后的embeddings, list, [(T1, C1), ..., (T1, C1)] 每个sample的T维度已进行随机顺序交换
# attractors, list, hts(论文里的as), [(max_n_speakers, n_units), ..., (max_n_speakers, n_units)]
# probs, list, [(max_n_speakers, ), ..., (max_n_speakers, ]
attractors, probs = self.eda.estimate(
[e[torch.from_numpy(order).to(torch.long).to(xs[0].device)] for e, order in zip(emb, orders)])
else:
attractors, probs = self.eda.estimate(emb)
attractors_active = []
for p, att, e in zip(probs, attractors, emb):
if n_speakers and n_speakers >= 0: # 根据指定说话人数, 选择对应数量的ys
# TODO在测试有不同数量speaker数的数据集时考虑改成根据sample来确定具体的speaker数而不是直接指定
# raise NotImplementedError
att = att[:n_speakers, ]
attractors_active.append(att)
elif threshold is not None:
silence = torch.nonzero(p < threshold)[0] # 找到第一个输出概率小于阈值的索引, 作为结束, 且值刚好等于说话人数
n_spk = silence[0] if silence.size else None
att = att[:n_spk, ]
attractors_active.append(att)
else:
NotImplementedError('n_speakers or th has to be given.')
raw_n_speakers = [att.shape[0] for att in attractors_active] # [C1, C2, ..., CB]
attractors = [
pad_attractor(att, self.max_n_speaker) if att.shape[0] <= self.max_n_speaker else att[:self.max_n_speaker]
for att in attractors_active]
ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)]
# ys_eda = [torch.sigmoid(y[:, :n_spk]) for y,n_spk in zip(ys, raw_n_speakers)]
logits = self.cal_postnet(ys, self.max_n_speaker)
ys = [self.recover_y_from_powerlabel(logit, raw_n_speaker) for logit, raw_n_speaker in
zip(logits, raw_n_speakers)]
return ys, emb, attractors, raw_n_speakers
def recover_y_from_powerlabel(self, logit, n_speaker):
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1) # (T, )
oov_index = torch.where(pred == self.mapping_dict['oov'])[0]
for i in oov_index:
if i > 0:
pred[i] = pred[i - 1]
else:
pred[i] = 0
pred = [self.reporter.inv_mapping_func(i, self.mapping_dict) for i in pred]
# print(pred)
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
decisions = torch.from_numpy(
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)).to(logit.device).to(
torch.float32)
decisions = decisions[:, :n_speaker]
return decisions