FunASR/funasr/bin/tp_inference_launch.py
jmwang66 98abc0e5ac
update setup (#686)
* update

* update setup

* update setup

* update setup

* update setup

* update setup

* update setup

* update

* update

* update setup
2023-06-29 16:30:39 +08:00

288 lines
9.2 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import argparse
import logging
import os
import sys
from typing import Optional
from typing import Union
import numpy as np
import torch
from funasr.bin.tp_infer import Speech2Timestamp
from funasr.build_utils.build_streaming_iterator import build_streaming_iterator
from funasr.datasets.preprocessor import LMPreprocessor
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
def inference_tp(
batch_size: int,
ngpu: int,
log_level: Union[int, str],
# data_path_and_name_and_type,
timestamp_infer_config: Optional[str],
timestamp_model_file: Optional[str],
timestamp_cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
num_workers: int = 1,
split_with_space: bool = True,
seg_dict_file: Optional[str] = None,
**kwargs,
):
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2vadsegment
speechtext2timestamp_kwargs = dict(
timestamp_infer_config=timestamp_infer_config,
timestamp_model_file=timestamp_model_file,
timestamp_cmvn_file=timestamp_cmvn_file,
device=device,
dtype=dtype,
)
logging.info("speechtext2timestamp_kwargs: {}".format(speechtext2timestamp_kwargs))
speechtext2timestamp = Speech2Timestamp(**speechtext2timestamp_kwargs)
preprocessor = LMPreprocessor(
train=False,
token_type=speechtext2timestamp.tp_train_args.token_type,
token_list=speechtext2timestamp.tp_train_args.token_list,
bpemodel=None,
text_cleaner=None,
g2p_type=None,
text_name="text",
non_linguistic_symbols=speechtext2timestamp.tp_train_args.non_linguistic_symbols,
split_with_space=split_with_space,
seg_dict_file=seg_dict_file,
)
if output_dir is not None:
writer = DatadirWriter(output_dir)
tp_writer = writer[f"timestamp_prediction"]
# ibest_writer["token_list"][""] = " ".join(speech2text.asr_train_args.token_list)
else:
tp_writer = None
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs
):
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
writer = None
if output_path is not None:
writer = DatadirWriter(output_path)
tp_writer = writer[f"timestamp_prediction"]
else:
tp_writer = None
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speechtext2timestamp.tp_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=preprocessor,
)
tp_result_list = []
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
logging.info("timestamp predicting, utt_id: {}".format(keys))
_batch = {'speech': batch['speech'],
'speech_lengths': batch['speech_lengths'],
'text_lengths': batch['text_lengths']}
us_alphas, us_cif_peak = speechtext2timestamp(**_batch)
for batch_id in range(_bs):
key = keys[batch_id]
token = speechtext2timestamp.converter.ids2tokens(batch['text'][batch_id])
ts_str, ts_list = ts_prediction_lfr6_standard(us_alphas[batch_id], us_cif_peak[batch_id], token,
force_time_shift=-3.0)
logging.warning(ts_str)
item = {'key': key, 'value': ts_str, 'timestamp': ts_list}
if tp_writer is not None:
tp_writer["tp_sync"][key + '#'] = ts_str
tp_writer["tp_time"][key + '#'] = str(ts_list)
tp_result_list.append(item)
return tp_result_list
return _forward
def inference_launch(mode, **kwargs):
if mode == "tp_norm":
return inference_tp(**kwargs)
else:
logging.info("Unknown decoding mode: {}".format(mode))
return None
def get_parser():
parser = config_argparse.ArgumentParser(
description="Timestamp Prediction Inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=False)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--njob",
type=int,
default=1,
help="The number of jobs for each gpu",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--timestamp_infer_config",
type=str,
help="VAD infer configuration",
)
group.add_argument(
"--timestamp_model_file",
type=str,
help="VAD model parameter file",
)
group.add_argument(
"--timestamp_cmvn_file",
type=str,
help="Global CMVN file",
)
group = parser.add_argument_group("The inference configuration related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
parser.add_argument(
"--mode",
type=str,
default="tp_norm",
help="The decoding mode",
)
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
# set logging messages
logging.basicConfig(
level=args.log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("Decoding args: {}".format(kwargs))
# gpu setting
if args.ngpu > 0:
jobid = int(args.output_dir.split(".")[-1])
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
inference_pipeline = inference_launch(**kwargs)
return inference_pipeline(kwargs["data_path_and_name_and_type"])
if __name__ == "__main__":
main()