FunASR/funasr/bin/argument.py
2023-11-17 15:19:53 +08:00

263 lines
7.8 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import sys
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.utils import config_argparse
import argparse
def get_parser():
parser = config_argparse.ArgumentParser(
description="ASR Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument(
"--ngpu",
type=int,
default=1,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--njob",
type=int,
default=1,
help="The number of jobs for each gpu",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=False,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
parser.add_argument(
"--hotword",
type=str_or_none,
default=None,
help="hotword file path or hotwords seperated by space"
)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group.add_argument(
"--mc",
type=bool,
default=False,
help="MultiChannel input",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--vad_infer_config",
type=str,
help="VAD infer configuration",
)
group.add_argument(
"--vad_model_file",
type=str,
help="VAD model parameter file",
)
group.add_argument(
"--punc_infer_config",
type=str,
help="PUNC infer configuration",
)
group.add_argument(
"--punc_model_file",
type=str,
help="PUNC model parameter file",
)
group.add_argument(
"--cmvn_file",
type=str,
help="Global CMVN file",
)
group.add_argument(
"--asr_train_config",
type=str,
help="ASR training configuration",
)
group.add_argument(
"--asr_model_file",
type=str,
help="ASR model parameter file",
)
group.add_argument(
"--sv_model_file",
type=str,
help="SV model parameter file",
)
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--word_lm_train_config",
type=str,
help="Word LM training configuration",
)
group.add_argument(
"--word_lm_file",
type=str,
help="Word LM parameter file",
)
group.add_argument(
"--ngram_file",
type=str,
help="N-gram parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group.add_argument(
"--beam_search_config",
default={},
help="The keyword arguments for transducer beam search.",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=5, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths."
"If maxlenratio<0.0, its absolute value is interpreted"
"as a constant max output length",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument(
"--ctc_weight",
type=float,
default=0.0,
help="CTC weight in joint decoding",
)
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
group.add_argument("--streaming", type=str2bool, default=False)
group.add_argument("--fake_streaming", type=str2bool, default=False)
group.add_argument("--full_utt", type=str2bool, default=False)
group.add_argument("--chunk_size", type=int, default=16)
group.add_argument("--left_context", type=int, default=16)
group.add_argument("--right_context", type=int, default=0)
group.add_argument(
"--display_partial_hypotheses",
type=bool,
default=False,
help="Whether to display partial hypotheses during chunk-by-chunk inference.",
)
group = parser.add_argument_group("Dynamic quantization related")
group.add_argument(
"--quantize_asr_model",
type=bool,
default=False,
help="Apply dynamic quantization to ASR model.",
)
group.add_argument(
"--quantize_modules",
nargs="*",
default=None,
help="""Module names to apply dynamic quantization on.
The module names are provided as a list, where each name is separated
by a comma (e.g.: --quantize-config=[Linear,LSTM,GRU]).
Each specified name should be an attribute of 'torch.nn', e.g.:
torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU, ...""",
)
group.add_argument(
"--quantize_dtype",
type=str,
default="qint8",
choices=["float16", "qint8"],
help="Dtype for dynamic quantization.",
)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ASR model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
group.add_argument("--token_num_relax", type=int, default=1, help="")
group.add_argument("--decoding_ind", type=int, default=0, help="")
group.add_argument("--decoding_mode", type=str, default="model1", help="")
group.add_argument(
"--ctc_weight2",
type=float,
default=0.0,
help="CTC weight in joint decoding",
)
return parser