FunASR/funasr/datasets/dataset_jsonl.py
zhifu gao 7dadb793e6
Dev gzf funasr2 (#1111)
* update funasr.text -> funasr.tokenizer fix bug export
2023-11-23 16:04:37 +08:00

124 lines
3.3 KiB
Python

import torch
import json
import torch.distributed as dist
import numpy as np
import kaldiio
import librosa
def load_audio(audio_path: str, fs: int=16000):
audio = None
if audio_path.startswith("oss:"):
pass
elif audio_path.startswith("odps:"):
pass
else:
if ".ark:" in audio_path:
audio = kaldiio.load_mat(audio_path)
else:
audio, fs = librosa.load(audio_path, sr=fs)
return audio
def extract_features(data, date_type: str="sound", frontend=None):
if date_type == "sound":
feat, feats_lens = frontend(data, len(data))
feat = feat[0, :, :]
else:
feat, feats_lens = torch.from_numpy(data).to(torch.float32), torch.tensor([data.shape[0]]).to(torch.int32)
return feat, feats_lens
class IndexedDatasetJsonl(torch.utils.data.Dataset):
def __init__(self, path):
super().__init__()
# data_parallel_size = dist.get_world_size()
data_parallel_size = 1
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
self.contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data["prompt"]
source = data["source"]
target = data["target"]
source_len = data["source_len"]
target_len = data["target_len"]
contents.append({"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
)
self.contents = []
total_num = len(contents)
num_per_rank = total_num // data_parallel_size
# rank = dist.get_rank()
rank = 0
# import ipdb; ipdb.set_trace()
self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
return self.contents[index]
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, path, frontend=None, tokenizer=None):
super().__init__()
self.indexed_dataset = IndexedDatasetJsonl(path)
self.frontend = frontend.forward
self.fs = 16000 if frontend is None else frontend.fs
self.data_type = "sound"
self.tokenizer = tokenizer
self.int_pad_value = -1
self.float_pad_value = 0.0
def __len__(self):
return len(self.indexed_dataset)
def __getitem__(self, index):
item = self.indexed_dataset[index]
source = item["source"]
data_src = load_audio(source, fs=self.fs)
speech, speech_lengths = extract_features(data_src, self.data_type, self.frontend)
target = item["target"]
text = self.tokenizer.encode(target)
text_lengths = len(text)
text, text_lengths = torch.tensor(text, dtype=torch.int64), torch.tensor([text_lengths], dtype=torch.int32)
return {"speech": speech,
"speech_lengths": speech_lengths,
"text": text,
"text_lengths": text_lengths,
}
def collator(self, samples: list=None):
outputs = {}
for sample in samples:
for key in sample.keys():
if key not in outputs:
outputs[key] = []
outputs[key].append(sample[key])
for key, data_list in outputs.items():
if data_list[0].dtype.kind == "i":
pad_value = self.int_pad_value
else:
pad_value = self.float_pad_value
outputs[key] = torch.nn.utils.rnn.pad_sequence(data_list, batch_first=True, padding_value=pad_value)
return samples