FunASR/funasr/export/models/predictor/cif.py
2023-02-14 19:05:53 +08:00

119 lines
3.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
from torch import nn
import logging
import numpy as np
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None):
if maxlen is None:
maxlen = lengths.max()
row_vector = torch.arange(0, maxlen, 1).to(lengths.device)
matrix = torch.unsqueeze(lengths, dim=-1)
mask = row_vector < matrix
mask = mask.detach()
return mask.type(dtype).to(device) if device is not None else mask.type(dtype)
class CifPredictorV2(nn.Module):
def __init__(self, model):
super().__init__()
self.pad = model.pad
self.cif_conv1d = model.cif_conv1d
self.cif_output = model.cif_output
self.threshold = model.threshold
self.smooth_factor = model.smooth_factor
self.noise_threshold = model.noise_threshold
self.tail_threshold = model.tail_threshold
def forward(self, hidden: torch.Tensor,
mask: torch.Tensor,
):
h = hidden
context = h.transpose(1, 2)
queries = self.pad(context)
output = torch.relu(self.cif_conv1d(queries))
output = output.transpose(1, 2)
output = self.cif_output(output)
alphas = torch.sigmoid(output)
alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
mask = mask.transpose(-1, -2).float()
alphas = alphas * mask
alphas = alphas.squeeze(-1)
token_num = alphas.sum(-1)
acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
return acoustic_embeds, token_num, alphas, cif_peak
def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
b, t, d = hidden.size()
tail_threshold = self.tail_threshold
zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
ones_t = torch.ones_like(zeros_t)
mask_1 = torch.cat([mask, zeros_t], dim=1)
mask_2 = torch.cat([ones_t, mask], dim=1)
mask = mask_2 - mask_1
tail_threshold = mask * tail_threshold
alphas = torch.cat([alphas, tail_threshold], dim=1)
zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
hidden = torch.cat([hidden, zeros], dim=1)
token_num = alphas.sum(dim=-1)
token_num_floor = torch.floor(token_num)
return hidden, alphas, token_num_floor
@torch.jit.script
def cif(hidden, alphas, threshold: float):
batch_size, len_time, hidden_size = hidden.size()
threshold = torch.tensor([threshold], dtype=alphas.dtype).to(alphas.device)
# loop varss
integrate = torch.zeros([batch_size], device=hidden.device)
frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
# intermediate vars along time
list_fires = []
list_frames = []
for t in range(len_time):
alpha = alphas[:, t]
distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate
integrate += alpha
list_fires.append(integrate)
fire_place = integrate >= threshold
integrate = torch.where(fire_place,
integrate - torch.ones([batch_size], device=hidden.device),
integrate)
cur = torch.where(fire_place,
distribution_completion,
alpha)
remainds = alpha - cur
frame += cur[:, None] * hidden[:, t, :]
list_frames.append(frame)
frame = torch.where(fire_place[:, None].repeat(1, hidden_size),
remainds[:, None] * hidden[:, t, :],
frame)
fires = torch.stack(list_fires, 1)
frames = torch.stack(list_frames, 1)
list_ls = []
len_labels = torch.round(alphas.sum(-1)).int()
max_label_len = len_labels.max()
for b in range(batch_size):
fire = fires[b, :]
l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze())
pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device)
list_ls.append(torch.cat([l, pad_l], 0))
return torch.stack(list_ls, 0), fires