mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
131 lines
4.4 KiB
Python
131 lines
4.4 KiB
Python
import json
|
|
from typing import Union, Dict
|
|
from pathlib import Path
|
|
from typeguard import check_argument_types
|
|
|
|
import os
|
|
import logging
|
|
import torch
|
|
|
|
from funasr.bin.asr_inference_paraformer import Speech2Text
|
|
from funasr.export.models import get_model
|
|
import numpy as np
|
|
import random
|
|
|
|
class ASRModelExportParaformer:
|
|
def __init__(self, cache_dir: Union[Path, str] = None, onnx: bool = True):
|
|
assert check_argument_types()
|
|
self.set_all_random_seed(0)
|
|
if cache_dir is None:
|
|
cache_dir = Path.home() / ".cache" / "export"
|
|
|
|
self.cache_dir = Path(cache_dir)
|
|
self.export_config = dict(
|
|
feats_dim=560,
|
|
onnx=False,
|
|
)
|
|
print("output dir: {}".format(self.cache_dir))
|
|
self.onnx = onnx
|
|
|
|
|
|
def _export(
|
|
self,
|
|
model: Speech2Text,
|
|
tag_name: str = None,
|
|
verbose: bool = False,
|
|
):
|
|
|
|
export_dir = self.cache_dir / tag_name.replace(' ', '-')
|
|
os.makedirs(export_dir, exist_ok=True)
|
|
|
|
# export encoder1
|
|
self.export_config["model_name"] = "model"
|
|
model = get_model(
|
|
model,
|
|
self.export_config,
|
|
)
|
|
# self._export_onnx(model, verbose, export_dir)
|
|
if self.onnx:
|
|
self._export_onnx(model, verbose, export_dir)
|
|
else:
|
|
self._export_torchscripts(model, verbose, export_dir)
|
|
|
|
print("output dir: {}".format(export_dir))
|
|
|
|
|
|
def _export_torchscripts(self, model, verbose, path, enc_size=None):
|
|
if enc_size:
|
|
dummy_input = model.get_dummy_inputs(enc_size)
|
|
else:
|
|
dummy_input = model.get_dummy_inputs_txt()
|
|
|
|
# model_script = torch.jit.script(model)
|
|
model_script = torch.jit.trace(model, dummy_input)
|
|
model_script.save(os.path.join(path, f'{model.model_name}.torchscripts'))
|
|
|
|
def set_all_random_seed(self, seed: int):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.random.manual_seed(seed)
|
|
def export(self,
|
|
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
|
mode: str = 'paraformer',
|
|
):
|
|
|
|
model_dir = tag_name
|
|
if model_dir.startswith('damo/'):
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
model_dir = snapshot_download(model_dir, cache_dir=self.cache_dir)
|
|
asr_train_config = os.path.join(model_dir, 'config.yaml')
|
|
asr_model_file = os.path.join(model_dir, 'model.pb')
|
|
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
|
json_file = os.path.join(model_dir, 'configuration.json')
|
|
if mode is None:
|
|
import json
|
|
with open(json_file, 'r') as f:
|
|
config_data = json.load(f)
|
|
mode = config_data['model']['model_config']['mode']
|
|
if mode == 'paraformer':
|
|
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
|
elif mode == 'uniasr':
|
|
from funasr.tasks.asr import ASRTaskUniASR as ASRTask
|
|
|
|
model, asr_train_args = ASRTask.build_model_from_file(
|
|
asr_train_config, asr_model_file, cmvn_file, 'cpu'
|
|
)
|
|
self._export(model, tag_name)
|
|
|
|
|
|
def _export_onnx(self, model, verbose, path, enc_size=None):
|
|
if enc_size:
|
|
dummy_input = model.get_dummy_inputs(enc_size)
|
|
else:
|
|
dummy_input = model.get_dummy_inputs()
|
|
|
|
# model_script = torch.jit.script(model)
|
|
model_script = model #torch.jit.trace(model)
|
|
|
|
torch.onnx.export(
|
|
model_script,
|
|
dummy_input,
|
|
os.path.join(path, f'{model.model_name}.onnx'),
|
|
verbose=verbose,
|
|
opset_version=12,
|
|
input_names=model.get_input_names(),
|
|
output_names=model.get_output_names(),
|
|
dynamic_axes=model.get_dynamic_axes()
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
import sys
|
|
|
|
model_path = sys.argv[1]
|
|
output_dir = sys.argv[2]
|
|
onnx = sys.argv[3]
|
|
onnx = onnx.lower()
|
|
onnx = onnx == 'true'
|
|
# model_path = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'
|
|
# output_dir = "../export"
|
|
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=onnx)
|
|
export_model.export(model_path)
|
|
# export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch') |