FunASR/funasr/export/export_model.py
2023-02-14 19:05:53 +08:00

131 lines
4.4 KiB
Python

import json
from typing import Union, Dict
from pathlib import Path
from typeguard import check_argument_types
import os
import logging
import torch
from funasr.bin.asr_inference_paraformer import Speech2Text
from funasr.export.models import get_model
import numpy as np
import random
class ASRModelExportParaformer:
def __init__(self, cache_dir: Union[Path, str] = None, onnx: bool = True):
assert check_argument_types()
self.set_all_random_seed(0)
if cache_dir is None:
cache_dir = Path.home() / ".cache" / "export"
self.cache_dir = Path(cache_dir)
self.export_config = dict(
feats_dim=560,
onnx=False,
)
print("output dir: {}".format(self.cache_dir))
self.onnx = onnx
def _export(
self,
model: Speech2Text,
tag_name: str = None,
verbose: bool = False,
):
export_dir = self.cache_dir / tag_name.replace(' ', '-')
os.makedirs(export_dir, exist_ok=True)
# export encoder1
self.export_config["model_name"] = "model"
model = get_model(
model,
self.export_config,
)
# self._export_onnx(model, verbose, export_dir)
if self.onnx:
self._export_onnx(model, verbose, export_dir)
else:
self._export_torchscripts(model, verbose, export_dir)
print("output dir: {}".format(export_dir))
def _export_torchscripts(self, model, verbose, path, enc_size=None):
if enc_size:
dummy_input = model.get_dummy_inputs(enc_size)
else:
dummy_input = model.get_dummy_inputs_txt()
# model_script = torch.jit.script(model)
model_script = torch.jit.trace(model, dummy_input)
model_script.save(os.path.join(path, f'{model.model_name}.torchscripts'))
def set_all_random_seed(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def export(self,
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
mode: str = 'paraformer',
):
model_dir = tag_name
if model_dir.startswith('damo/'):
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download(model_dir, cache_dir=self.cache_dir)
asr_train_config = os.path.join(model_dir, 'config.yaml')
asr_model_file = os.path.join(model_dir, 'model.pb')
cmvn_file = os.path.join(model_dir, 'am.mvn')
json_file = os.path.join(model_dir, 'configuration.json')
if mode is None:
import json
with open(json_file, 'r') as f:
config_data = json.load(f)
mode = config_data['model']['model_config']['mode']
if mode == 'paraformer':
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
elif mode == 'uniasr':
from funasr.tasks.asr import ASRTaskUniASR as ASRTask
model, asr_train_args = ASRTask.build_model_from_file(
asr_train_config, asr_model_file, cmvn_file, 'cpu'
)
self._export(model, tag_name)
def _export_onnx(self, model, verbose, path, enc_size=None):
if enc_size:
dummy_input = model.get_dummy_inputs(enc_size)
else:
dummy_input = model.get_dummy_inputs()
# model_script = torch.jit.script(model)
model_script = model #torch.jit.trace(model)
torch.onnx.export(
model_script,
dummy_input,
os.path.join(path, f'{model.model_name}.onnx'),
verbose=verbose,
opset_version=12,
input_names=model.get_input_names(),
output_names=model.get_output_names(),
dynamic_axes=model.get_dynamic_axes()
)
if __name__ == '__main__':
import sys
model_path = sys.argv[1]
output_dir = sys.argv[2]
onnx = sys.argv[3]
onnx = onnx.lower()
onnx = onnx == 'true'
# model_path = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'
# output_dir = "../export"
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=onnx)
export_model.export(model_path)
# export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')