FunASR/funasr/datasets/large_datasets/build_dataloader.py
speech_asr 8314c5f17e update
2023-03-21 16:28:22 +08:00

97 lines
3.4 KiB
Python

import logging
from pathlib import Path
from typing import Iterable
from typing import List
from typing import Union
import sentencepiece as spm
from torch.utils.data import DataLoader
from typeguard import check_argument_types
from funasr.datasets.large_datasets.dataset import Dataset
from funasr.iterators.abs_iter_factory import AbsIterFactory
from funasr.text.abs_tokenizer import AbsTokenizer
def read_symbol_table(symbol_table_file):
if isinstance(symbol_table_file, str):
symbol_table = {}
with open(symbol_table_file, "r", encoding="utf8") as fin:
for i, line in enumerate(fin):
char = line.strip()
symbol_table[char] = i
else:
assert isinstance(symbol_table_file, list)
symbol_table = {}
for i, char in enumerate(symbol_table_file):
symbol_table[char] = i
return symbol_table
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
class SentencepiecesTokenizer(AbsTokenizer):
def __init__(self, model: Union[Path, str]):
assert check_argument_types()
self.model = str(model)
self.sp = None
def __repr__(self):
return f'{self.__class__.__name__}(model="{self.model}")'
def _build_sentence_piece_processor(self):
if self.sp is None:
self.sp = spm.SentencePieceProcessor()
self.sp.load(self.model)
def text2tokens(self, line: str) -> List[str]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsPieces(line)
def tokens2text(self, tokens: Iterable[str]) -> str:
self._build_sentence_piece_processor()
return self.sp.DecodePieces(list(tokens))
class ArkDataLoader(AbsIterFactory):
def __init__(self, data_list, dict_file, dataset_conf, frontend_conf=None, seg_dict_file=None, punc_dict_file=None,
bpemodel_file=None, mode="train"):
symbol_table = read_symbol_table(dict_file) if dict_file is not None else None
if seg_dict_file is not None:
seg_dict = load_seg_dict(seg_dict_file)
else:
seg_dict = None
if punc_dict_file is not None:
punc_dict = read_symbol_table(punc_dict_file)
else:
punc_dict = None
self.dataset_conf = dataset_conf
self.frontend_conf = frontend_conf
logging.info("dataloader config: {}".format(self.dataset_conf))
batch_mode = self.dataset_conf.get("batch_mode", "padding")
if bpemodel_file is not None:
bpe_tokenizer = SentencepiecesTokenizer(bpemodel_file)
else:
bpe_tokenizer = None
self.dataset = Dataset(data_list, symbol_table, seg_dict, punc_dict, bpe_tokenizer,
self.dataset_conf, self.frontend_conf, mode=mode, batch_mode=batch_mode)
def build_iter(self, epoch, shuffle=True):
self.dataset.set_epoch(epoch)
data_loader = DataLoader(self.dataset,
batch_size=None,
pin_memory=True,
num_workers=self.dataset_conf.get("num_workers", 8))
return data_loader