FunASR/funasr/bin/punc_inference_launch.py
jmwang66 98abc0e5ac
update setup (#686)
* update

* update setup

* update setup

* update setup

* update setup

* update setup

* update setup

* update

* update

* update setup
2023-06-29 16:30:39 +08:00

253 lines
7.8 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import argparse
import logging
import os
import sys
from pathlib import Path
from typing import Any
from typing import List
from typing import Optional
from typing import Union
import torch
from funasr.bin.punc_infer import Text2Punc, Text2PuncVADRealtime
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
def inference_punc(
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
output_dir: Optional[str] = None,
param_dict: dict = None,
**kwargs,
):
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
text2punc = Text2Punc(train_config, model_file, device)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[List[Any], bytes, str] = None,
output_dir_v2: Optional[str] = None,
cache: List[Any] = None,
param_dict: dict = None,
):
results = []
split_size = 20
if raw_inputs != None:
line = raw_inputs.strip()
key = "demo"
if line == "":
item = {'key': key, 'value': ""}
results.append(item)
return results
result, _ = text2punc(line)
item = {'key': key, 'value': result}
results.append(item)
return results
for inference_text, _, _ in data_path_and_name_and_type:
with open(inference_text, "r", encoding="utf-8") as fin:
for line in fin:
line = line.strip()
segs = line.split("\t")
if len(segs) != 2:
continue
key = segs[0]
if len(segs[1]) == 0:
continue
result, _ = text2punc(segs[1])
item = {'key': key, 'value': result}
results.append(item)
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path != None:
output_file_name = "infer.out"
Path(output_path).mkdir(parents=True, exist_ok=True)
output_file_path = (Path(output_path) / output_file_name).absolute()
with open(output_file_path, "w", encoding="utf-8") as fout:
for item_i in results:
key_out = item_i["key"]
value_out = item_i["value"]
fout.write(f"{key_out}\t{value_out}\n")
return results
return _forward
def inference_punc_vad_realtime(
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
# cache: list,
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
output_dir: Optional[str] = None,
param_dict: dict = None,
**kwargs,
):
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
text2punc = Text2PuncVADRealtime(train_config, model_file, device)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[List[Any], bytes, str] = None,
output_dir_v2: Optional[str] = None,
cache: List[Any] = None,
param_dict: dict = None,
):
results = []
split_size = 10
cache_in = param_dict["cache"]
if raw_inputs != None:
line = raw_inputs.strip()
key = "demo"
if line == "":
item = {'key': key, 'value': ""}
results.append(item)
return results
result, _, cache = text2punc(line, cache_in)
param_dict["cache"] = cache
item = {'key': key, 'value': result}
results.append(item)
return results
return results
return _forward
def inference_launch(mode, **kwargs):
if mode == "punc":
return inference_punc(**kwargs)
if mode == "punc_VadRealtime":
return inference_punc_vad_realtime(**kwargs)
else:
logging.info("Unknown decoding mode: {}".format(mode))
return None
def get_parser():
parser = config_argparse.ArgumentParser(
description="Punctuation inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--gpuid_list", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument("--njob", type=int, default=1, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Input data related")
group.add_argument("--data_path_and_name_and_type", type=str2triple_str, action="append", required=False)
group.add_argument("--raw_inputs", type=str, required=False)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--cache", type=list, required=False)
group.add_argument("--param_dict", type=dict, required=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--train_config", type=str)
group.add_argument("--model_file", type=str)
group.add_argument("--mode", type=str, default="punc")
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
# set logging messages
logging.basicConfig(
level=args.log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("Decoding args: {}".format(kwargs))
# gpu setting
if args.ngpu > 0:
jobid = int(args.output_dir.split(".")[-1])
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
kwargs.pop("gpuid_list", None)
kwargs.pop("njob", None)
inference_pipeline = inference_launch(**kwargs)
return inference_pipeline(kwargs["data_path_and_name_and_type"])
if __name__ == "__main__":
main()