mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
import asyncio
|
|
import json
|
|
import websockets
|
|
import time
|
|
from queue import Queue
|
|
import threading
|
|
import argparse
|
|
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.logger import get_logger
|
|
import logging
|
|
import tracemalloc
|
|
import numpy as np
|
|
|
|
tracemalloc.start()
|
|
|
|
logger = get_logger(log_level=logging.CRITICAL)
|
|
logger.setLevel(logging.CRITICAL)
|
|
|
|
|
|
websocket_users = set() #维护客户端列表
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--host",
|
|
type=str,
|
|
default="0.0.0.0",
|
|
required=False,
|
|
help="host ip, localhost, 0.0.0.0")
|
|
parser.add_argument("--port",
|
|
type=int,
|
|
default=10095,
|
|
required=False,
|
|
help="grpc server port")
|
|
parser.add_argument("--asr_model",
|
|
type=str,
|
|
default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
|
help="model from modelscope")
|
|
parser.add_argument("--vad_model",
|
|
type=str,
|
|
default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
|
help="model from modelscope")
|
|
|
|
parser.add_argument("--punc_model",
|
|
type=str,
|
|
default="damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727",
|
|
help="model from modelscope")
|
|
parser.add_argument("--ngpu",
|
|
type=int,
|
|
default=1,
|
|
help="0 for cpu, 1 for gpu")
|
|
|
|
args = parser.parse_args()
|
|
|
|
print("model loading")
|
|
|
|
def load_bytes(input):
|
|
middle_data = np.frombuffer(input, dtype=np.int16)
|
|
middle_data = np.asarray(middle_data)
|
|
if middle_data.dtype.kind not in 'iu':
|
|
raise TypeError("'middle_data' must be an array of integers")
|
|
dtype = np.dtype('float32')
|
|
if dtype.kind != 'f':
|
|
raise TypeError("'dtype' must be a floating point type")
|
|
|
|
i = np.iinfo(middle_data.dtype)
|
|
abs_max = 2 ** (i.bits - 1)
|
|
offset = i.min + abs_max
|
|
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
|
return array
|
|
|
|
inference_pipeline_asr_online = pipeline(
|
|
task=Tasks.auto_speech_recognition,
|
|
# model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
|
|
model='damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online',
|
|
model_revision=None)
|
|
|
|
|
|
print("model loaded")
|
|
|
|
|
|
|
|
async def ws_serve(websocket, path):
|
|
frames_online = []
|
|
global websocket_users
|
|
websocket.send_msg = Queue()
|
|
websocket_users.add(websocket)
|
|
websocket.param_dict_asr_online = {"cache": dict()}
|
|
websocket.speek_online = Queue()
|
|
ss_online = threading.Thread(target=asr_online, args=(websocket,))
|
|
ss_online.start()
|
|
ss_ws_send = threading.Thread(target=ws_send, args=(websocket,))
|
|
ss_ws_send.start()
|
|
try:
|
|
async for message in websocket:
|
|
message = json.loads(message)
|
|
audio = bytes(message['audio'], 'ISO-8859-1')
|
|
chunk = message["chunk"]
|
|
chunk_num = 500//chunk
|
|
is_speaking = message["is_speaking"]
|
|
websocket.param_dict_asr_online["is_final"] = not is_speaking
|
|
frames_online.append(audio)
|
|
|
|
if len(frames_online) % chunk_num == 0 or not is_speaking:
|
|
audio_in = b"".join(frames_online)
|
|
websocket.speek_online.put(audio_in)
|
|
frames_online = []
|
|
|
|
# if not websocket.send_msg.empty():
|
|
# await websocket.send(websocket.send_msg.get())
|
|
# websocket.send_msg.task_done()
|
|
|
|
|
|
except websockets.ConnectionClosed:
|
|
print("ConnectionClosed...", websocket_users) # 链接断开
|
|
websocket_users.remove(websocket)
|
|
except websockets.InvalidState:
|
|
print("InvalidState...") # 无效状态
|
|
except Exception as e:
|
|
print("Exception:", e)
|
|
|
|
|
|
|
|
def ws_send(websocket): # ASR推理
|
|
global inference_pipeline_asr_online
|
|
global websocket_users
|
|
while websocket in websocket_users:
|
|
if not websocket.speek_online.empty():
|
|
await websocket.send(websocket.send_msg.get())
|
|
websocket.send_msg.task_done()
|
|
time.sleep(0.005)
|
|
|
|
|
|
def asr_online(websocket): # ASR推理
|
|
global websocket_users
|
|
while websocket in websocket_users:
|
|
if not websocket.send_msg.empty():
|
|
audio_in = websocket.speek_online.get()
|
|
websocket.speek_online.task_done()
|
|
if len(audio_in) > 0:
|
|
# print(len(audio_in))
|
|
audio_in = load_bytes(audio_in)
|
|
# print(audio_in.shape)
|
|
print(websocket.param_dict_asr_online["is_final"])
|
|
rec_result = inference_pipeline_asr_online(audio_in=audio_in,
|
|
param_dict=websocket.param_dict_asr_online)
|
|
if websocket.param_dict_asr_online["is_final"]:
|
|
websocket.param_dict_asr_online["cache"] = dict()
|
|
|
|
print(rec_result)
|
|
if "text" in rec_result:
|
|
if rec_result["text"] != "sil" and rec_result["text"] != "waiting_for_more_voice":
|
|
message = json.dumps({"mode": "online", "text": rec_result["text"]})
|
|
websocket.send_msg.put(message) # 存入发送队列 直接调用send发送不了
|
|
|
|
time.sleep(0.005)
|
|
|
|
|
|
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
|
|
asyncio.get_event_loop().run_until_complete(start_server)
|
|
asyncio.get_event_loop().run_forever() |