mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
452 lines
21 KiB
Python
452 lines
21 KiB
Python
import json
|
|
import time
|
|
import copy
|
|
import torch
|
|
import random
|
|
import string
|
|
import logging
|
|
import os.path
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from funasr.register import tables
|
|
from funasr.utils.load_utils import load_bytes
|
|
from funasr.download.file import download_from_url
|
|
from funasr.download.download_from_hub import download_model
|
|
from funasr.utils.vad_utils import slice_padding_audio_samples
|
|
from funasr.train_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.train_utils.load_pretrained_model import load_pretrained_model
|
|
from funasr.utils.load_utils import load_audio_text_image_video
|
|
from funasr.utils.timestamp_tools import timestamp_sentence
|
|
from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk
|
|
try:
|
|
from funasr.models.campplus.cluster_backend import ClusterBackend
|
|
except:
|
|
print("If you want to use the speaker diarization, please `pip install hdbscan`")
|
|
import pdb
|
|
|
|
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
|
|
"""
|
|
|
|
:param input:
|
|
:param input_len:
|
|
:param data_type:
|
|
:param frontend:
|
|
:return:
|
|
"""
|
|
data_list = []
|
|
key_list = []
|
|
filelist = [".scp", ".txt", ".json", ".jsonl"]
|
|
|
|
chars = string.ascii_letters + string.digits
|
|
if isinstance(data_in, str) and data_in.startswith('http'): # url
|
|
data_in = download_from_url(data_in)
|
|
if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
|
|
_, file_extension = os.path.splitext(data_in)
|
|
file_extension = file_extension.lower()
|
|
if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt;
|
|
with open(data_in, encoding='utf-8') as fin:
|
|
for line in fin:
|
|
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
|
|
if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data})
|
|
lines = json.loads(line.strip())
|
|
data = lines["source"]
|
|
key = data["key"] if "key" in data else key
|
|
else: # filelist, wav.scp, text.txt: id \t data or data
|
|
lines = line.strip().split(maxsplit=1)
|
|
data = lines[1] if len(lines)>1 else lines[0]
|
|
key = lines[0] if len(lines)>1 else key
|
|
|
|
data_list.append(data)
|
|
key_list.append(key)
|
|
else:
|
|
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
|
|
data_list = [data_in]
|
|
key_list = [key]
|
|
elif isinstance(data_in, (list, tuple)):
|
|
if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs
|
|
data_list_tmp = []
|
|
for data_in_i, data_type_i in zip(data_in, data_type):
|
|
key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i)
|
|
data_list_tmp.append(data_list_i)
|
|
data_list = []
|
|
for item in zip(*data_list_tmp):
|
|
data_list.append(item)
|
|
else:
|
|
# [audio sample point, fbank, text]
|
|
data_list = data_in
|
|
key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))]
|
|
else: # raw text; audio sample point, fbank; bytes
|
|
if isinstance(data_in, bytes): # audio bytes
|
|
data_in = load_bytes(data_in)
|
|
if key is None:
|
|
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
|
|
data_list = [data_in]
|
|
key_list = [key]
|
|
|
|
return key_list, data_list
|
|
|
|
|
|
class AutoModel:
|
|
|
|
def __init__(self, **kwargs):
|
|
if not kwargs.get("disable_log", False):
|
|
tables.print()
|
|
|
|
model, kwargs = self.build_model(**kwargs)
|
|
|
|
# if vad_model is not None, build vad model else None
|
|
vad_model = kwargs.get("vad_model", None)
|
|
vad_kwargs = kwargs.get("vad_model_revision", None)
|
|
if vad_model is not None:
|
|
logging.info("Building VAD model.")
|
|
vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs, "device": kwargs["device"]}
|
|
vad_model, vad_kwargs = self.build_model(**vad_kwargs)
|
|
|
|
# if punc_model is not None, build punc model else None
|
|
punc_model = kwargs.get("punc_model", None)
|
|
punc_kwargs = kwargs.get("punc_model_revision", None)
|
|
if punc_model is not None:
|
|
logging.info("Building punc model.")
|
|
punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs, "device": kwargs["device"]}
|
|
punc_model, punc_kwargs = self.build_model(**punc_kwargs)
|
|
|
|
# if spk_model is not None, build spk model else None
|
|
spk_model = kwargs.get("spk_model", None)
|
|
spk_kwargs = kwargs.get("spk_model_revision", None)
|
|
if spk_model is not None:
|
|
logging.info("Building SPK model.")
|
|
spk_kwargs = {"model": spk_model, "model_revision": spk_kwargs, "device": kwargs["device"]}
|
|
spk_model, spk_kwargs = self.build_model(**spk_kwargs)
|
|
self.cb_model = ClusterBackend().to(kwargs["device"])
|
|
spk_mode = kwargs.get("spk_mode", 'punc_segment')
|
|
if spk_mode not in ["default", "vad_segment", "punc_segment"]:
|
|
logging.error("spk_mode should be one of default, vad_segment and punc_segment.")
|
|
self.spk_mode = spk_mode
|
|
|
|
self.kwargs = kwargs
|
|
self.model = model
|
|
self.vad_model = vad_model
|
|
self.vad_kwargs = vad_kwargs
|
|
self.punc_model = punc_model
|
|
self.punc_kwargs = punc_kwargs
|
|
self.spk_model = spk_model
|
|
self.spk_kwargs = spk_kwargs
|
|
self.model_path = kwargs.get("model_path")
|
|
|
|
def build_model(self, **kwargs):
|
|
assert "model" in kwargs
|
|
if "model_conf" not in kwargs:
|
|
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
|
|
kwargs = download_model(**kwargs)
|
|
|
|
set_all_random_seed(kwargs.get("seed", 0))
|
|
|
|
device = kwargs.get("device", "cuda")
|
|
if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
|
|
device = "cpu"
|
|
kwargs["batch_size"] = 1
|
|
kwargs["device"] = device
|
|
|
|
if kwargs.get("ncpu", None):
|
|
torch.set_num_threads(kwargs.get("ncpu"))
|
|
|
|
# build tokenizer
|
|
tokenizer = kwargs.get("tokenizer", None)
|
|
if tokenizer is not None:
|
|
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
|
|
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
|
|
kwargs["tokenizer"] = tokenizer
|
|
kwargs["token_list"] = tokenizer.token_list
|
|
vocab_size = len(tokenizer.token_list)
|
|
else:
|
|
vocab_size = -1
|
|
# build frontend
|
|
frontend = kwargs.get("frontend", None)
|
|
|
|
if frontend is not None:
|
|
frontend_class = tables.frontend_classes.get(frontend)
|
|
frontend = frontend_class(**kwargs["frontend_conf"])
|
|
kwargs["frontend"] = frontend
|
|
kwargs["input_size"] = frontend.output_size()
|
|
|
|
# build model
|
|
model_class = tables.model_classes.get(kwargs["model"])
|
|
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size)
|
|
model.to(device)
|
|
|
|
# init_param
|
|
init_param = kwargs.get("init_param", None)
|
|
if init_param is not None:
|
|
logging.info(f"Loading pretrained params from {init_param}")
|
|
load_pretrained_model(
|
|
model=model,
|
|
path=init_param,
|
|
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
|
|
oss_bucket=kwargs.get("oss_bucket", None),
|
|
scope_map=kwargs.get("scope_map", None),
|
|
excludes=kwargs.get("excludes", None),
|
|
)
|
|
|
|
return model, kwargs
|
|
|
|
def __call__(self, *args, **cfg):
|
|
kwargs = self.kwargs
|
|
kwargs.update(cfg)
|
|
res = self.model(*args, kwargs)
|
|
return res
|
|
|
|
def generate(self, input, input_len=None, **cfg):
|
|
if self.vad_model is None:
|
|
return self.inference(input, input_len=input_len, **cfg)
|
|
|
|
else:
|
|
return self.inference_with_vad(input, input_len=input_len, **cfg)
|
|
|
|
def inference(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg):
|
|
kwargs = self.kwargs if kwargs is None else kwargs
|
|
kwargs.update(cfg)
|
|
model = self.model if model is None else model
|
|
model.eval()
|
|
|
|
batch_size = kwargs.get("batch_size", 1)
|
|
# if kwargs.get("device", "cpu") == "cpu":
|
|
# batch_size = 1
|
|
|
|
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key)
|
|
|
|
speed_stats = {}
|
|
asr_result_list = []
|
|
num_samples = len(data_list)
|
|
disable_pbar = kwargs.get("disable_pbar", False)
|
|
pbar = tqdm(colour="blue", total=num_samples, dynamic_ncols=True) if not disable_pbar else None
|
|
time_speech_total = 0.0
|
|
time_escape_total = 0.0
|
|
for beg_idx in range(0, num_samples, batch_size):
|
|
end_idx = min(num_samples, beg_idx + batch_size)
|
|
data_batch = data_list[beg_idx:end_idx]
|
|
key_batch = key_list[beg_idx:end_idx]
|
|
batch = {"data_in": data_batch, "key": key_batch}
|
|
|
|
if (end_idx - beg_idx) == 1 and kwargs.get("data_type", None) == "fbank": # fbank
|
|
batch["data_in"] = data_batch[0]
|
|
batch["data_lengths"] = input_len
|
|
|
|
time1 = time.perf_counter()
|
|
with torch.no_grad():
|
|
pdb.set_trace()
|
|
results, meta_data = model.inference(**batch, **kwargs)
|
|
time2 = time.perf_counter()
|
|
|
|
pdb.set_trace()
|
|
asr_result_list.extend(results)
|
|
|
|
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
|
|
batch_data_time = meta_data.get("batch_data_time", -1)
|
|
time_escape = time2 - time1
|
|
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
|
|
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
|
|
speed_stats["forward"] = f"{time_escape:0.3f}"
|
|
speed_stats["batch_size"] = f"{len(results)}"
|
|
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
|
|
description = (
|
|
f"{speed_stats}, "
|
|
)
|
|
if pbar:
|
|
pbar.update(1)
|
|
pbar.set_description(description)
|
|
time_speech_total += batch_data_time
|
|
time_escape_total += time_escape
|
|
|
|
if pbar:
|
|
# pbar.update(1)
|
|
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
|
|
torch.cuda.empty_cache()
|
|
return asr_result_list
|
|
|
|
def inference_with_vad(self, input, input_len=None, **cfg):
|
|
|
|
# step.1: compute the vad model
|
|
self.vad_kwargs.update(cfg)
|
|
beg_vad = time.time()
|
|
res = self.inference(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg)
|
|
end_vad = time.time()
|
|
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
|
|
|
|
|
|
# step.2 compute asr model
|
|
model = self.model
|
|
kwargs = self.kwargs
|
|
kwargs.update(cfg)
|
|
batch_size = int(kwargs.get("batch_size_s", 300))*1000
|
|
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000
|
|
kwargs["batch_size"] = batch_size
|
|
|
|
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None))
|
|
results_ret_list = []
|
|
time_speech_total_all_samples = 1e-6
|
|
|
|
beg_total = time.time()
|
|
pbar_total = tqdm(colour="red", total=len(res), dynamic_ncols=True)
|
|
for i in range(len(res)):
|
|
key = res[i]["key"]
|
|
vadsegments = res[i]["value"]
|
|
input_i = data_list[i]
|
|
speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000))
|
|
speech_lengths = len(speech)
|
|
n = len(vadsegments)
|
|
data_with_index = [(vadsegments[i], i) for i in range(n)]
|
|
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
|
|
results_sorted = []
|
|
|
|
if not len(sorted_data):
|
|
logging.info("decoding, utt: {}, empty speech".format(key))
|
|
continue
|
|
|
|
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
|
|
batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0])
|
|
|
|
batch_size_ms_cum = 0
|
|
beg_idx = 0
|
|
beg_asr_total = time.time()
|
|
time_speech_total_per_sample = speech_lengths/16000
|
|
time_speech_total_all_samples += time_speech_total_per_sample
|
|
|
|
# pbar_sample = tqdm(colour="blue", total=n, dynamic_ncols=True)
|
|
|
|
all_segments = []
|
|
for j, _ in enumerate(range(0, n)):
|
|
# pbar_sample.update(1)
|
|
batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0])
|
|
if j < n - 1 and (
|
|
batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and (
|
|
sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms:
|
|
continue
|
|
batch_size_ms_cum = 0
|
|
end_idx = j + 1
|
|
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
|
|
results = self.inference(speech_j, input_len=None, model=model, kwargs=kwargs, disable_pbar=True, **cfg)
|
|
if self.spk_model is not None:
|
|
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
|
|
for _b in range(len(speech_j)):
|
|
vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0,
|
|
sorted_data[beg_idx:end_idx][_b][0][1]/1000.0,
|
|
np.array(speech_j[_b])]]
|
|
segments = sv_chunk(vad_segments)
|
|
all_segments.extend(segments)
|
|
speech_b = [i[2] for i in segments]
|
|
spk_res = self.inference(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, disable_pbar=True, **cfg)
|
|
results[_b]['spk_embedding'] = spk_res[0]['spk_embedding']
|
|
beg_idx = end_idx
|
|
if len(results) < 1:
|
|
continue
|
|
results_sorted.extend(results)
|
|
|
|
# end_asr_total = time.time()
|
|
# time_escape_total_per_sample = end_asr_total - beg_asr_total
|
|
# pbar_sample.update(1)
|
|
# pbar_sample.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
|
|
# f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
|
|
# f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
|
|
|
|
restored_data = [0] * n
|
|
for j in range(n):
|
|
index = sorted_data[j][1]
|
|
restored_data[index] = results_sorted[j]
|
|
result = {}
|
|
|
|
# results combine for texts, timestamps, speaker embeddings and others
|
|
# TODO: rewrite for clean code
|
|
for j in range(n):
|
|
for k, v in restored_data[j].items():
|
|
if k.startswith("timestamp"):
|
|
if k not in result:
|
|
result[k] = []
|
|
for t in restored_data[j][k]:
|
|
t[0] += vadsegments[j][0]
|
|
t[1] += vadsegments[j][0]
|
|
result[k].extend(restored_data[j][k])
|
|
elif k == 'spk_embedding':
|
|
if k not in result:
|
|
result[k] = restored_data[j][k]
|
|
else:
|
|
result[k] = torch.cat([result[k], restored_data[j][k]], dim=0)
|
|
elif 'text' in k:
|
|
if k not in result:
|
|
result[k] = restored_data[j][k]
|
|
else:
|
|
result[k] += " " + restored_data[j][k]
|
|
else:
|
|
if k not in result:
|
|
result[k] = restored_data[j][k]
|
|
else:
|
|
result[k] += restored_data[j][k]
|
|
|
|
return_raw_text = kwargs.get('return_raw_text', False)
|
|
# step.3 compute punc model
|
|
if self.punc_model is not None:
|
|
self.punc_kwargs.update(cfg)
|
|
punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, disable_pbar=True, **cfg)
|
|
raw_text = copy.copy(result["text"])
|
|
if return_raw_text: result['raw_text'] = raw_text
|
|
result["text"] = punc_res[0]["text"]
|
|
else:
|
|
raw_text = None
|
|
|
|
# speaker embedding cluster after resorted
|
|
if self.spk_model is not None and kwargs.get('return_spk_res', True):
|
|
if raw_text is None:
|
|
logging.error("Missing punc_model, which is required by spk_model.")
|
|
all_segments = sorted(all_segments, key=lambda x: x[0])
|
|
spk_embedding = result['spk_embedding']
|
|
labels = self.cb_model(spk_embedding.cpu(), oracle_num=kwargs.get('preset_spk_num', None))
|
|
# del result['spk_embedding']
|
|
sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu())
|
|
if self.spk_mode == 'vad_segment': # recover sentence_list
|
|
sentence_list = []
|
|
for res, vadsegment in zip(restored_data, vadsegments):
|
|
if 'timestamp' not in res:
|
|
logging.error("Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
|
|
and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
|
|
can predict timestamp, and speaker diarization relies on timestamps.")
|
|
sentence_list.append({"start": vadsegment[0],
|
|
"end": vadsegment[1],
|
|
"sentence": res['text'],
|
|
"timestamp": res['timestamp']})
|
|
elif self.spk_mode == 'punc_segment':
|
|
if 'timestamp' not in result:
|
|
logging.error("Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
|
|
and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
|
|
can predict timestamp, and speaker diarization relies on timestamps.")
|
|
sentence_list = timestamp_sentence(punc_res[0]['punc_array'],
|
|
result['timestamp'],
|
|
raw_text,
|
|
return_raw_text=return_raw_text)
|
|
distribute_spk(sentence_list, sv_output)
|
|
result['sentence_info'] = sentence_list
|
|
elif kwargs.get("sentence_timestamp", False):
|
|
sentence_list = timestamp_sentence(punc_res[0]['punc_array'],
|
|
result['timestamp'],
|
|
raw_text,
|
|
return_raw_text=return_raw_text)
|
|
result['sentence_info'] = sentence_list
|
|
if "spk_embedding" in result: del result['spk_embedding']
|
|
|
|
result["key"] = key
|
|
results_ret_list.append(result)
|
|
end_asr_total = time.time()
|
|
time_escape_total_per_sample = end_asr_total - beg_asr_total
|
|
pbar_total.update(1)
|
|
pbar_total.set_description(f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
|
|
f"time_speech: {time_speech_total_per_sample: 0.3f}, "
|
|
f"time_escape: {time_escape_total_per_sample:0.3f}")
|
|
|
|
|
|
# end_total = time.time()
|
|
# time_escape_total_all_samples = end_total - beg_total
|
|
# print(f"rtf_avg_all: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, "
|
|
# f"time_speech_all: {time_speech_total_all_samples: 0.3f}, "
|
|
# f"time_escape_all: {time_escape_total_all_samples:0.3f}")
|
|
return results_ret_list
|
|
|