FunASR/funasr/datasets/dataloader_entry.py
2024-03-24 15:29:14 +08:00

69 lines
3.4 KiB
Python

import logging
import torch
from funasr.register import tables
# @tables.register("dataloader_classes", "DataloaderMapStyle")
def DataloaderMapStyle(frontend=None, tokenizer=None, **kwargs):
# dataset
logging.info("Build dataloader")
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=True, **kwargs.get("dataset_conf"))
dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=False, **kwargs.get("dataset_conf"))
# dataloader
batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
batch_sampler_val = None
if batch_sampler is not None:
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
batch_sampler_val = batch_sampler_class(dataset_val, is_training=False, **kwargs.get("dataset_conf"))
dataloader_tr = torch.utils.data.DataLoader(dataset_tr, collate_fn=dataset_tr.collator, **batch_sampler)
dataloader_val = torch.utils.data.DataLoader(dataset_val, collate_fn=dataset_val.collator, **batch_sampler_val)
return dataloader_tr, dataloader_val
@tables.register("dataloader_classes", "DataloaderMapStyle")
class DataloaderMapStyle:
def __init__(self, frontend=None, tokenizer=None, **kwargs):
# dataset
logging.info("Build dataloader")
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer,
is_training=True, **kwargs.get("dataset_conf"))
dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer,
is_training=False, **kwargs.get("dataset_conf"))
self.dataset_tr = dataset_tr
self.dataset_val = dataset_val
self.kwargs = kwargs
def build_iter(self, epoch=0):
# dataloader
batch_sampler = self.kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
batch_sampler_val = None
if batch_sampler is not None:
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
batch_sampler = batch_sampler_class(self.dataset_tr, **self.kwargs.get("dataset_conf"))
batch_sampler_val = batch_sampler_class(self.dataset_val, is_training=False, **self.kwargs.get("dataset_conf"))
batch_sampler["batch_sampler"].set_epoch(epoch)
batch_sampler_val["batch_sampler"].set_epoch(epoch)
dataloader_tr = torch.utils.data.DataLoader(self.dataset_tr, collate_fn=self.dataset_tr.collator, **batch_sampler)
dataloader_val = torch.utils.data.DataLoader(self.dataset_val, collate_fn=self.dataset_val.collator, **batch_sampler_val)
return dataloader_tr, dataloader_val
@tables.register("dataloader_classes", "DataloaderIterable")
def DataloaderIterable(frontend=None, tokenizer=None, **kwargs):
logging.info("Build dataloader")
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "LargeDataset"))
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer,
is_training=True, **kwargs.get("dataset_conf"))
dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer,
is_training=False, **kwargs.get("dataset_conf"))
return dataset_tr, dataset_val