mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
|
|
import numpy as np
|
|
|
|
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None):
|
|
if maxlen is None:
|
|
maxlen = lengths.max()
|
|
row_vector = torch.arange(0, maxlen, 1).to(lengths.device)
|
|
matrix = torch.unsqueeze(lengths, dim=-1)
|
|
mask = row_vector < matrix
|
|
mask = mask.detach()
|
|
|
|
return mask.type(dtype).to(device) if device is not None else mask.type(dtype)
|
|
|
|
def apply_cmvn(inputs, mvn):
|
|
device = inputs.device
|
|
dtype = inputs.dtype
|
|
frame, dim = inputs.shape
|
|
meams = np.tile(mvn[0:1, :dim], (frame, 1))
|
|
vars = np.tile(mvn[1:2, :dim], (frame, 1))
|
|
inputs -= torch.from_numpy(meams).type(dtype).to(device)
|
|
inputs *= torch.from_numpy(vars).type(dtype).to(device)
|
|
|
|
return inputs.type(torch.float32)
|
|
|
|
|
|
|
|
|
|
def drop_and_add(inputs: torch.Tensor,
|
|
outputs: torch.Tensor,
|
|
training: bool,
|
|
dropout_rate: float = 0.1,
|
|
stoch_layer_coeff: float = 1.0):
|
|
|
|
|
|
|
|
outputs = F.dropout(outputs, p=dropout_rate, training=training, inplace=True)
|
|
outputs *= stoch_layer_coeff
|
|
|
|
input_dim = inputs.size(-1)
|
|
output_dim = outputs.size(-1)
|
|
|
|
if input_dim == output_dim:
|
|
outputs += inputs
|
|
return outputs
|
|
|