FunASR/funasr/bin/vad_inference_launch.py
2023-05-18 14:16:26 +08:00

410 lines
13 KiB
Python

# -*- encoding: utf-8 -*-
#!/usr/bin/env python3
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
torch.set_num_threads(1)
import argparse
import logging
import os
import sys
from typing import Union, Dict, Any
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
import argparse
import logging
import os
import sys
import json
from pathlib import Path
from typing import Any
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
from typing import Dict
import math
import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
from funasr.modules.subsampling import TooShortUttError
from funasr.tasks.vad import VADTask
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.utils import asr_utils, wav_utils, postprocess_utils
from funasr.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline
from funasr.bin.vad_infer import Speech2VadSegment, Speech2VadSegmentOnline
def inference_vad(
batch_size: int,
ngpu: int,
log_level: Union[int, str],
# data_path_and_name_and_type,
vad_infer_config: Optional[str],
vad_model_file: Optional[str],
vad_cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
num_workers: int = 1,
**kwargs,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
batch_size = 1
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2vadsegment
speech2vadsegment_kwargs = dict(
vad_infer_config=vad_infer_config,
vad_model_file=vad_model_file,
vad_cmvn_file=vad_cmvn_file,
device=device,
dtype=dtype,
)
logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = VADTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
ibest_writer = writer[f"1best_recog"]
else:
writer = None
ibest_writer = None
vad_results = []
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# do vad segment
_, results = speech2vadsegment(**batch)
for i, _ in enumerate(keys):
if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas":
results[i] = json.dumps(results[i])
item = {'key': keys[i], 'value': results[i]}
vad_results.append(item)
if writer is not None:
ibest_writer["text"][keys[i]] = "{}".format(results[i])
return vad_results
return _forward
def inference_vad_online(
batch_size: int,
ngpu: int,
log_level: Union[int, str],
# data_path_and_name_and_type,
vad_infer_config: Optional[str],
vad_model_file: Optional[str],
vad_cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
num_workers: int = 1,
**kwargs,
):
assert check_argument_types()
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
batch_size = 1
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2vadsegment
speech2vadsegment_kwargs = dict(
vad_infer_config=vad_infer_config,
vad_model_file=vad_model_file,
vad_cmvn_file=vad_cmvn_file,
device=device,
dtype=dtype,
)
logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
speech2vadsegment = Speech2VadSegmentOnline(**speech2vadsegment_kwargs)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = VADTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
ibest_writer = writer[f"1best_recog"]
else:
writer = None
ibest_writer = None
vad_results = []
if param_dict is None:
param_dict = dict()
param_dict['in_cache'] = dict()
param_dict['is_final'] = True
batch_in_cache = param_dict.get('in_cache', dict())
is_final = param_dict.get('is_final', False)
max_end_sil = param_dict.get('max_end_sil', 800)
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch['in_cache'] = batch_in_cache
batch['is_final'] = is_final
batch['max_end_sil'] = max_end_sil
# do vad segment
_, results, param_dict['in_cache'] = speech2vadsegment(**batch)
# param_dict['in_cache'] = batch['in_cache']
if results:
for i, _ in enumerate(keys):
if results[i]:
if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas":
results[i] = json.dumps(results[i])
item = {'key': keys[i], 'value': results[i]}
vad_results.append(item)
if writer is not None:
ibest_writer["text"][keys[i]] = "{}".format(results[i])
return vad_results
return _forward
def inference_launch(mode, **kwargs):
if mode == "offline":
return inference_vad(**kwargs)
elif mode == "online":
return inference_vad_online(**kwargs)
else:
logging.info("Unknown decoding mode: {}".format(mode))
return None
def get_parser():
parser = config_argparse.ArgumentParser(
description="VAD Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--njob",
type=int,
default=1,
help="The number of jobs for each gpu",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--vad_infer_config",
type=str,
help="VAD infer configuration",
)
group.add_argument(
"--vad_model_file",
type=str,
help="VAD model parameter file",
)
group.add_argument(
"--vad_cmvn_file",
type=str,
help="Global CMVN file",
)
group.add_argument(
"--vad_train_config",
type=str,
help="VAD training configuration",
)
group = parser.add_argument_group("The inference configuration related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
parser.add_argument(
"--mode",
type=str,
default="vad",
help="The decoding mode",
)
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
# set logging messages
logging.basicConfig(
level=args.log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("Decoding args: {}".format(kwargs))
# gpu setting
if args.ngpu > 0:
jobid = int(args.output_dir.split(".")[-1])
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
inference_pipeline = inference_launch(**kwargs)
return inference_pipeline(kwargs["data_path_and_name_and_type"])
if __name__ == "__main__":
main()