mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
64 lines
2.1 KiB
Python
64 lines
2.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Label smoothing module."""
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
|
|
class LabelSmoothingLoss(nn.Module):
|
|
"""Label-smoothing loss.
|
|
|
|
:param int size: the number of class
|
|
:param int padding_idx: ignored class id
|
|
:param float smoothing: smoothing rate (0.0 means the conventional CE)
|
|
:param bool normalize_length: normalize loss by sequence length if True
|
|
:param torch.nn.Module criterion: loss function to be smoothed
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
padding_idx,
|
|
smoothing,
|
|
normalize_length=False,
|
|
criterion=nn.KLDivLoss(reduction="none"),
|
|
):
|
|
"""Construct an LabelSmoothingLoss object."""
|
|
super(LabelSmoothingLoss, self).__init__()
|
|
self.criterion = criterion
|
|
self.padding_idx = padding_idx
|
|
self.confidence = 1.0 - smoothing
|
|
self.smoothing = smoothing
|
|
self.size = size
|
|
self.true_dist = None
|
|
self.normalize_length = normalize_length
|
|
|
|
def forward(self, x, target):
|
|
"""Compute loss between x and target.
|
|
|
|
:param torch.Tensor x: prediction (batch, seqlen, class)
|
|
:param torch.Tensor target:
|
|
target signal masked with self.padding_id (batch, seqlen)
|
|
:return: scalar float value
|
|
:rtype torch.Tensor
|
|
"""
|
|
assert x.size(2) == self.size
|
|
batch_size = x.size(0)
|
|
x = x.view(-1, self.size)
|
|
target = target.view(-1)
|
|
with torch.no_grad():
|
|
true_dist = x.clone()
|
|
true_dist.fill_(self.smoothing / (self.size - 1))
|
|
ignore = target == self.padding_idx # (B,)
|
|
total = len(target) - ignore.sum().item()
|
|
target = target.masked_fill(ignore, 0) # avoid -1 index
|
|
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
|
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
|
denom = total if self.normalize_length else batch_size
|
|
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|