FunASR/funasr/export/models/vad_realtime_transformer.py
2023-03-29 21:15:55 +08:00

80 lines
2.2 KiB
Python

from typing import Any
from typing import List
from typing import Tuple
import torch
import torch.nn as nn
from funasr.modules.embedding import SinusoidalPositionEncoder
from funasr.punctuation.sanm_encoder import SANMVadEncoder as Encoder
from funasr.punctuation.abs_model import AbsPunctuation
from funasr.punctuation.sanm_encoder import SANMVadEncoder
from funasr.export.models.encoder.sanm_encoder import SANMVadEncoder as SANMVadEncoder_export
class VadRealtimeTransformer(AbsPunctuation):
def __init__(
self,
model,
max_seq_len=512,
model_name='punc_model',
**kwargs,
):
super().__init__()
self.embed = model.embed
if isinstance(model.encoder, SANMVadEncoder):
self.encoder = SANMVadEncoder_export(model.encoder, onnx=onnx)
else:
assert False, "Only support samn encode."
# self.encoder = model.encoder
self.decoder = model.decoder
def forward(self, input: torch.Tensor, text_lengths: torch.Tensor,
vad_indexes: torch.Tensor) -> Tuple[torch.Tensor, None]:
"""Compute loss value from buffer sequences.
Args:
input (torch.Tensor): Input ids. (batch, len)
hidden (torch.Tensor): Target ids. (batch, len)
"""
x = self.embed(input)
# mask = self._target_mask(input)
h, _, _ = self.encoder(x, text_lengths, vad_indexes)
y = self.decoder(h)
return y
def with_vad(self):
return True
def get_dummy_inputs(self):
length = 120
text_indexes = torch.randint(0, self.embed.num_embeddings, (2, length))
text_lengths = torch.tensor([length-20, length], dtype=torch.int32)
return (text_indexes, text_lengths)
def get_input_names(self):
return ['input', 'text_lengths']
def get_output_names(self):
return ['logits']
def get_dynamic_axes(self):
return {
'input': {
0: 'batch_size',
1: 'feats_length'
},
'text_lengths': {
0: 'batch_size',
},
'logits': {
0: 'batch_size',
1: 'logits_length'
},
}