FunASR/funasr/runtime/python/grpc
2023-01-31 13:49:33 +08:00
..
proto add workflow 2023-01-29 18:33:29 +08:00
.gitignore adjust import lib order 2023-01-30 17:18:20 +08:00
grpc_client.py adjust import lib order 2023-01-30 17:18:20 +08:00
grpc_main_client_mic.py adjust import lib order 2023-01-30 17:18:20 +08:00
grpc_main_server.py adjust import lib order 2023-01-30 17:18:20 +08:00
grpc_server.py adjust import lib order 2023-01-30 17:18:20 +08:00
paraformer_pb2_grpc.py fix client, add pb file 2023-01-29 19:01:36 +08:00
paraformer_pb2.py fix client, add pb file 2023-01-29 19:01:36 +08:00
Readme.md update server env 2023-01-31 13:49:33 +08:00

Using paraformer with grpc

We can send streaming audio data to server in real-time with grpc client every 10 ms e.g., and get transcribed text when stop speaking. The audio data is in streaming, the asr inference process is in offline.

Steps

Step 1) Optional, prepare server environment (on server). Install modelscope and funasr with pip or with cuda-docker image.

Option 1: Install modelscope and funasr with pip

Option 2: or install with cuda-docker image as:

CID=`docker run --network host -d -it --gpus '"device=0"' registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-cuda11.3.0-py37-torch1.11.0-tf1.15.5-1.2.0`
echo $CID
docker exec -it $CID /bin/bash

Get funasr source code and get into grpc directory.

git clone https://github.com/alibaba-damo-academy/FunASR
cd FunASR/funasr/runtime/python/grpc/

Step 2) Optional, generate protobuf file (run on server, the two generated pb file are both used for server and client).

# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated.
python -m grpc_tools.protoc  --proto_path=./proto -I ./proto    --python_out=. --grpc_python_out=./ ./proto/paraformer.proto

Step 3) Start grpc server (on server).

python grpc_main_server.py --port 10095

Step 4) Start grpc client (on client with microphone).

# Optional, Install dependency.
python -m pip install pyaudio webrtcvad
# Start client.
python grpc_main_client_mic.py --host 127.0.0.1 --port 10095

Workflow in desgin

avatar

Reference

We borrow from or refer to some code as:

1)https://github.com/wenet-e2e/wenet/tree/main/runtime/core/grpc

2)https://github.com/Open-Speech-EkStep/inference_service/blob/main/realtime_inference_service.py