mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
199 lines
6.1 KiB
Python
199 lines
6.1 KiB
Python
import os
|
|
import torch
|
|
import functools
|
|
|
|
try:
|
|
import torch_blade
|
|
except Exception as e:
|
|
print(f"failed to load torch_blade: {e}")
|
|
|
|
|
|
def export(model, data_in=None, quantize: bool = False, opset_version: int = 14, type='onnx', **kwargs):
|
|
model_scripts = model.export(**kwargs)
|
|
export_dir = kwargs.get("output_dir", os.path.dirname(kwargs.get("init_param")))
|
|
os.makedirs(export_dir, exist_ok=True)
|
|
|
|
if not isinstance(model_scripts, (list, tuple)):
|
|
model_scripts = (model_scripts,)
|
|
for m in model_scripts:
|
|
m.eval()
|
|
if type == 'onnx':
|
|
_onnx(
|
|
m,
|
|
data_in=data_in,
|
|
quantize=quantize,
|
|
opset_version=opset_version,
|
|
export_dir=export_dir,
|
|
**kwargs
|
|
)
|
|
elif type == 'torchscripts':
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
_torchscripts(
|
|
m,
|
|
path=export_dir,
|
|
device=device
|
|
)
|
|
elif type == "bladedisc":
|
|
assert (
|
|
torch.cuda.is_available()
|
|
), "Currently bladedisc optimization for FunASR only supports GPU"
|
|
# bladedisc only optimizes encoder/decoder modules
|
|
if hasattr(m, "encoder") and hasattr(m, "decoder"):
|
|
_bladedisc_opt_for_encdec(m, path=export_dir, enable_fp16=True)
|
|
else:
|
|
_torchscripts(m, path=export_dir, device="cuda")
|
|
print("output dir: {}".format(export_dir))
|
|
|
|
return export_dir
|
|
|
|
|
|
def _onnx(
|
|
model,
|
|
data_in=None,
|
|
quantize: bool = False,
|
|
opset_version: int = 14,
|
|
export_dir: str = None,
|
|
**kwargs
|
|
):
|
|
|
|
dummy_input = model.export_dummy_inputs()
|
|
|
|
verbose = kwargs.get("verbose", False)
|
|
|
|
export_name = model.export_name + '.onnx'
|
|
model_path = os.path.join(export_dir, export_name)
|
|
torch.onnx.export(
|
|
model,
|
|
dummy_input,
|
|
model_path,
|
|
verbose=verbose,
|
|
opset_version=opset_version,
|
|
input_names=model.export_input_names(),
|
|
output_names=model.export_output_names(),
|
|
dynamic_axes=model.export_dynamic_axes(),
|
|
)
|
|
|
|
if quantize:
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
import onnx
|
|
|
|
quant_model_path = model_path.replace(".onnx", "_quant.onnx")
|
|
if not os.path.exists(quant_model_path):
|
|
onnx_model = onnx.load(model_path)
|
|
nodes = [n.name for n in onnx_model.graph.node]
|
|
nodes_to_exclude = [
|
|
m for m in nodes if "output" in m or "bias_encoder" in m or "bias_decoder" in m
|
|
]
|
|
quantize_dynamic(
|
|
model_input=model_path,
|
|
model_output=quant_model_path,
|
|
op_types_to_quantize=["MatMul"],
|
|
per_channel=True,
|
|
reduce_range=False,
|
|
weight_type=QuantType.QUInt8,
|
|
nodes_to_exclude=nodes_to_exclude,
|
|
)
|
|
|
|
|
|
def _torchscripts(model, path, device='cuda'):
|
|
dummy_input = model.export_dummy_inputs()
|
|
|
|
if device == 'cuda':
|
|
model = model.cuda()
|
|
if isinstance(dummy_input, torch.Tensor):
|
|
dummy_input = dummy_input.cuda()
|
|
else:
|
|
dummy_input = tuple([i.cuda() for i in dummy_input])
|
|
|
|
model_script = torch.jit.trace(model, dummy_input)
|
|
model_script.save(os.path.join(path, f'{model.export_name}.torchscripts'))
|
|
|
|
|
|
def _bladedisc_opt(model, model_inputs, enable_fp16=True):
|
|
model = model.eval()
|
|
torch_config = torch_blade.config.Config()
|
|
torch_config.enable_fp16 = enable_fp16
|
|
with torch.no_grad(), torch_config:
|
|
opt_model = torch_blade.optimize(
|
|
model,
|
|
allow_tracing=True,
|
|
model_inputs=model_inputs,
|
|
)
|
|
return opt_model
|
|
|
|
|
|
def _rescale_input_hook(m, x, scale):
|
|
if len(x) > 1:
|
|
return (x[0] / scale, *x[1:])
|
|
else:
|
|
return (x[0] / scale,)
|
|
|
|
|
|
def _rescale_output_hook(m, x, y, scale):
|
|
if isinstance(y, tuple):
|
|
return (y[0] / scale, *y[1:])
|
|
else:
|
|
return y / scale
|
|
|
|
|
|
def _rescale_encoder_model(model, input_data):
|
|
# Calculate absmax
|
|
absmax = torch.tensor(0).cuda()
|
|
|
|
def stat_input_hook(m, x, y):
|
|
val = x[0] if isinstance(x, tuple) else x
|
|
absmax.copy_(torch.max(absmax, val.detach().abs().max()))
|
|
|
|
encoders = model.encoder.model.encoders
|
|
hooks = [m.register_forward_hook(stat_input_hook) for m in encoders]
|
|
model = model.cuda()
|
|
model(*input_data)
|
|
for h in hooks:
|
|
h.remove()
|
|
|
|
# Rescale encoder modules
|
|
fp16_scale = int(2 * absmax // 65536)
|
|
print(f"rescale encoder modules with factor={fp16_scale}")
|
|
model.encoder.model.encoders0.register_forward_pre_hook(
|
|
functools.partial(_rescale_input_hook, scale=fp16_scale),
|
|
)
|
|
for name, m in model.encoder.model.named_modules():
|
|
if name.endswith("self_attn"):
|
|
m.register_forward_hook(
|
|
functools.partial(_rescale_output_hook, scale=fp16_scale)
|
|
)
|
|
if name.endswith("feed_forward.w_2"):
|
|
state_dict = {k: v / fp16_scale for k, v in m.state_dict().items()}
|
|
m.load_state_dict(state_dict)
|
|
|
|
|
|
def _bladedisc_opt_for_encdec(model, path, enable_fp16):
|
|
# Get input data
|
|
# TODO: better to use real data
|
|
input_data = model.export_dummy_inputs()
|
|
if isinstance(input_data, torch.Tensor):
|
|
input_data = input_data.cuda()
|
|
else:
|
|
input_data = tuple([i.cuda() for i in input_data])
|
|
|
|
# Get input data for decoder module
|
|
decoder_inputs = list()
|
|
|
|
def get_input_hook(m, x):
|
|
decoder_inputs.extend(list(x))
|
|
|
|
hook = model.decoder.register_forward_pre_hook(get_input_hook)
|
|
model = model.cuda()
|
|
model(*input_data)
|
|
hook.remove()
|
|
|
|
# Prevent FP16 overflow
|
|
if enable_fp16:
|
|
_rescale_encoder_model(model, input_data)
|
|
|
|
# Export and optimize encoder/decoder modules
|
|
model.encoder = _bladedisc_opt(model.encoder, input_data[:2])
|
|
model.decoder = _bladedisc_opt(model.decoder, tuple(decoder_inputs))
|
|
model_script = torch.jit.trace(model, input_data)
|
|
model_script.save(os.path.join(path, f"{model.export_name}.torchscripts"))
|