mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
128 lines
3.9 KiB
Python
128 lines
3.9 KiB
Python
from typing import Any
|
|
from typing import Dict
|
|
from typing import Union
|
|
from io import BytesIO
|
|
|
|
import logging
|
|
import torch
|
|
import torch.nn
|
|
import torch.optim
|
|
|
|
|
|
def filter_state_dict(
|
|
dst_state: Dict[str, Union[float, torch.Tensor]],
|
|
src_state: Dict[str, Union[float, torch.Tensor]],
|
|
):
|
|
"""Filter name, size mismatch instances between dicts.
|
|
|
|
Args:
|
|
dst_state: reference state dict for filtering
|
|
src_state: target state dict for filtering
|
|
|
|
"""
|
|
match_state = {}
|
|
for key, value in src_state.items():
|
|
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
|
|
match_state[key] = value
|
|
else:
|
|
if key not in dst_state:
|
|
logging.warning(
|
|
f"Filter out {key} from pretrained dict"
|
|
+ " because of name not found in target dict"
|
|
)
|
|
else:
|
|
logging.warning(
|
|
f"Filter out {key} from pretrained dict"
|
|
+ " because of size mismatch"
|
|
+ f"({dst_state[key].size()}-{src_state[key].size()})"
|
|
)
|
|
return match_state
|
|
|
|
|
|
def load_pretrained_model(
|
|
init_param: str,
|
|
model: torch.nn.Module,
|
|
ignore_init_mismatch: bool,
|
|
map_location: str = "cpu",
|
|
oss_bucket=None,
|
|
):
|
|
"""Load a model state and set it to the model.
|
|
|
|
Args:
|
|
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
|
|
|
|
Examples:
|
|
>>> load_pretrained_model("somewhere/model.pb", model)
|
|
>>> load_pretrained_model("somewhere/model.pb:decoder:decoder", model)
|
|
>>> load_pretrained_model("somewhere/model.pb:decoder:decoder:", model)
|
|
>>> load_pretrained_model(
|
|
... "somewhere/model.pb:decoder:decoder:decoder.embed", model
|
|
... )
|
|
>>> load_pretrained_model("somewhere/decoder.pb::decoder", model)
|
|
"""
|
|
sps = init_param.split(":", 4)
|
|
if len(sps) == 4:
|
|
path, src_key, dst_key, excludes = sps
|
|
elif len(sps) == 3:
|
|
path, src_key, dst_key = sps
|
|
excludes = None
|
|
elif len(sps) == 2:
|
|
path, src_key = sps
|
|
dst_key, excludes = None, None
|
|
else:
|
|
(path,) = sps
|
|
src_key, dst_key, excludes = None, None, None
|
|
if src_key == "":
|
|
src_key = None
|
|
if dst_key == "":
|
|
dst_key = None
|
|
|
|
if dst_key is None:
|
|
obj = model
|
|
else:
|
|
|
|
def get_attr(obj: Any, key: str):
|
|
"""Get an nested attribute.
|
|
|
|
>>> class A(torch.nn.Module):
|
|
... def __init__(self):
|
|
... super().__init__()
|
|
... self.linear = torch.nn.Linear(10, 10)
|
|
>>> a = A()
|
|
>>> assert A.linear.weight is get_attr(A, 'linear.weight')
|
|
|
|
"""
|
|
if key.strip() == "":
|
|
return obj
|
|
for k in key.split("."):
|
|
obj = getattr(obj, k)
|
|
return obj
|
|
|
|
obj = get_attr(model, dst_key)
|
|
|
|
if oss_bucket is None:
|
|
src_state = torch.load(path, map_location=map_location)
|
|
else:
|
|
buffer = BytesIO(oss_bucket.get_object(path).read())
|
|
src_state = torch.load(buffer, map_location=map_location)
|
|
src_state = src_state["model"] if "model" in src_state else src_state
|
|
if excludes is not None:
|
|
for e in excludes.split(","):
|
|
src_state = {k: v for k, v in src_state.items() if not k.startswith(e)}
|
|
|
|
if src_key is not None:
|
|
src_state = {
|
|
k[len(src_key) + 1 :]: v
|
|
for k, v in src_state.items()
|
|
if k.startswith(src_key)
|
|
}
|
|
|
|
dst_state = obj.state_dict()
|
|
if ignore_init_mismatch:
|
|
src_state = filter_state_dict(dst_state, src_state)
|
|
|
|
logging.debug("Loaded src_state keys: {}".format(src_state.keys()))
|
|
logging.debug("Loaded dst_state keys: {}".format(dst_state.keys()))
|
|
dst_state.update(src_state)
|
|
obj.load_state_dict(dst_state)
|
|
|