FunASR/examples/industrial_data_pretraining/paraformer/finetune.sh
zhifu gao 20c35cdbc7
Dev gzf (#1379)
* update train recipe

* v1.0.8

* llm

* update trainer

* update trainer

* update trainer

* train finetune demo

* train finetune demo
2024-02-22 12:07:30 +08:00

44 lines
1.4 KiB
Bash

# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# method1, finetune from model hub
# which gpu to train or finetune
export CUDA_VISIBLE_DEVICES="0,1"
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
# data dir, which contains: train.json, val.json
data_dir="/Users/zhifu/funasr1.0/data/list"
## generate jsonl from wav.scp and text.txt
#python -m funasr.datasets.audio_datasets.scp2jsonl \
#++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \
#++data_type_list='["source", "target"]' \
#++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl
train_data="${data_dir}/train.jsonl"
val_data="${data_dir}/val.jsonl"
# exp output dir
output_dir="/Users/zhifu/exp"
log_file="${output_dir}/log.txt"
mkdir -p ${output_dir}
echo "log_file: ${log_file}"
torchrun \
--nnodes 1 \
--nproc_per_node ${gpu_num} \
funasr/bin/train.py \
++model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
++model_revision="v2.0.4" \
++train_data_set_list="${train_data}" \
++valid_data_set_list="${val_data}" \
++dataset_conf.batch_size=32 \
++dataset_conf.batch_type="example" \
++dataset_conf.num_workers=4 \
++train_conf.max_epoch=20 \
++optim_conf.lr=0.0002 \
++output_dir="${output_dir}" &> ${log_file}