mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
| .. | ||
| torch_paraformer | ||
| __init__.py | ||
| demo.py | ||
| README.md | ||
| setup.py | ||
Using paraformer with libtorch
Introduction
- Model comes from speech_paraformer.
Steps:
-
Export the model.
-
Command: (
Tips: torch >= 1.11.0 is required.)python -m funasr.export.export_model [model_name] [export_dir] [true]model_name: the model is to export.export_dir: the dir where the onnx is export.More details ref to (export docs)
e.g., Export model from modelscopepython -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" truee.g., Export model from local path, the model'name must bemodel.pb.python -m funasr.export.export_model '/mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
-
-
Install the
torch_paraformer.- Build the torch_paraformer
whlgit clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/libtorch python setup.py bdist_wheel - Install the build
whlpip install dist/torch_paraformer-0.0.1-py3-none-any.whl
- Build the torch_paraformer
-
Run the demo.
- Model_dir: the model path, which contains
model.torchscripts,config.yaml,am.mvn. - Input: wav formt file, support formats:
str, np.ndarray, List[str] - Output:
List[str]: recognition result. - Example:
from torch_paraformer import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result)
- Model_dir: the model path, which contains
Speed
Environment:Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
Test wav, 5.53s, 100 times avg.
| Backend | RTF |
|---|---|
| Pytorch | 0.110 |
| Onnx | 0.038 |