FunASR/funasr/runtime/python/libtorch
2023-03-02 19:34:46 +08:00
..
torch_paraformer torchscripts 2023-03-02 19:34:46 +08:00
__init__.py torchscripts 2023-03-02 19:34:46 +08:00
demo.py torchscripts 2023-03-02 19:34:46 +08:00
README.md torchscripts 2023-03-02 19:34:46 +08:00
setup.py torchscripts 2023-03-02 19:34:46 +08:00

Using paraformer with libtorch

Introduction

Steps:

  1. Export the model.

    • Command: (Tips: torch >= 1.11.0 is required.)

      python -m funasr.export.export_model [model_name] [export_dir] [true]
      

      model_name: the model is to export.

      export_dir: the dir where the onnx is export.

      More details ref to (export docs)

      • e.g., Export model from modelscope
        python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
        
      • e.g., Export model from local path, the model'name must be model.pb.
        python -m funasr.export.export_model '/mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
        
  2. Install the torch_paraformer.

    • Build the torch_paraformer whl
      git clone https://github.com/alibaba/FunASR.git && cd FunASR
      cd funasr/runtime/python/libtorch
      python setup.py bdist_wheel
      
    • Install the build whl
      pip install dist/torch_paraformer-0.0.1-py3-none-any.whl
      
  3. Run the demo.

    • Model_dir: the model path, which contains model.torchscripts, config.yaml, am.mvn.
    • Input: wav formt file, support formats: str, np.ndarray, List[str]
    • Output: List[str]: recognition result.
    • Example:
      from torch_paraformer import Paraformer
      
      model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
      model = Paraformer(model_dir, batch_size=1)
      
      wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
      
      result = model(wav_path)
      print(result)
      

Speed

EnvironmentIntel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz

Test wav, 5.53s, 100 times avg.

Backend RTF
Pytorch 0.110
Onnx 0.038

Acknowledge