mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Fix memory and performance issues caused by long-term use of streaming VAD. 1.Remove unnecessary scores cache and only keep the latest score. 2.Remove the data_buf_all and data_buf cache, and only cache their lengths. |
||
|---|---|---|
| .. | ||
| funasr_onnx | ||
| __init__.py | ||
| demo_punc_offline.py | ||
| demo_punc_online.py | ||
| demo_vad_offline.py | ||
| demo_vad_online.py | ||
| demo.py | ||
| README.md | ||
| setup.py | ||
ONNXRuntime-python
Export the model
Install modelscope and funasr
#pip3 install torch torchaudio
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install torch-quant # Optional, for torchscript quantization
pip install onnx onnxruntime # Optional, for onnx quantization
Export onnx model
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True
Install funasr_onnx
install from pip
pip install -U funasr_onnx
# For the users in China, you could install with the command:
# pip install -U funasr_onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple
or install from source code
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple
Inference with runtime
Speech Recognition
Paraformer
from funasr_onnx import Paraformer
model_dir = "./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1, quantize=True)
wav_path = ['./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
result = model(wav_path)
print(result)
model_dir: the model path, which containsmodel.onnx,config.yaml,am.mvnbatch_size:1(Default), the batch size duration inferencedevice_id:-1(Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)quantize:False(Default), load the model ofmodel.onnxinmodel_dir. If setTrue, load the model ofmodel_quant.onnxinmodel_dirintra_op_num_threads:4(Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: str, np.ndarray, List[str]
Output: List[str]: recognition result
Paraformer-online
Voice Activity Detection
FSMN-VAD
from funasr_onnx import Fsmn_vad
model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav"
model = Fsmn_vad(model_dir)
result = model(wav_path)
print(result)
model_dir: the model path, which containsmodel.onnx,config.yaml,am.mvnbatch_size:1(Default), the batch size duration inferencedevice_id:-1(Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)quantize:False(Default), load the model ofmodel.onnxinmodel_dir. If setTrue, load the model ofmodel_quant.onnxinmodel_dirintra_op_num_threads:4(Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: str, np.ndarray, List[str]
Output: List[str]: recognition result
FSMN-VAD-online
from funasr_onnx import Fsmn_vad_online
import soundfile
model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav"
model = Fsmn_vad_online(model_dir)
##online vad
speech, sample_rate = soundfile.read(wav_path)
speech_length = speech.shape[0]
#
sample_offset = 0
step = 1600
param_dict = {'in_cache': []}
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
if sample_offset + step >= speech_length - 1:
step = speech_length - sample_offset
is_final = True
else:
is_final = False
param_dict['is_final'] = is_final
segments_result = model(audio_in=speech[sample_offset: sample_offset + step],
param_dict=param_dict)
if segments_result:
print(segments_result)
model_dir: the model path, which containsmodel.onnx,config.yaml,am.mvnbatch_size:1(Default), the batch size duration inferencedevice_id:-1(Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)quantize:False(Default), load the model ofmodel.onnxinmodel_dir. If setTrue, load the model ofmodel_quant.onnxinmodel_dirintra_op_num_threads:4(Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: str, np.ndarray, List[str]
Output: List[str]: recognition result
Punctuation Restoration
CT-Transformer
from funasr_onnx import CT_Transformer
model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
model = CT_Transformer(model_dir)
text_in="跨境河流是养育沿岸人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切愿意进一步完善双方联合工作机制凡是中方能做的我们都会去做而且会做得更好我请印度朋友们放心中国在上游的任何开发利用都会经过科学规划和论证兼顾上下游的利益"
result = model(text_in)
print(result[0])
model_dir: the model path, which containsmodel.onnx,config.yaml,am.mvndevice_id:-1(Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)quantize:False(Default), load the model ofmodel.onnxinmodel_dir. If setTrue, load the model ofmodel_quant.onnxinmodel_dirintra_op_num_threads:4(Default), sets the number of threads used for intraop parallelism on CPU
Input: str, raw text of asr result
Output: List[str]: recognition result
CT-Transformer-online
from funasr_onnx import CT_Transformer_VadRealtime
model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
model = CT_Transformer_VadRealtime(model_dir)
text_in = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流>问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads = text_in.split("|")
rec_result_all=""
param_dict = {"cache": []}
for vad in vads:
result = model(vad, param_dict=param_dict)
rec_result_all += result[0]
print(rec_result_all)
model_dir: the model path, which containsmodel.onnx,config.yaml,am.mvndevice_id:-1(Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)quantize:False(Default), load the model ofmodel.onnxinmodel_dir. If setTrue, load the model ofmodel_quant.onnxinmodel_dirintra_op_num_threads:4(Default), sets the number of threads used for intraop parallelism on CPU
Input: str, raw text of asr result
Output: List[str]: recognition result
Performance benchmark
Please ref to benchmark
Acknowledge
- This project is maintained by FunASR community.
- We acknowledge SWHL for contributing the onnxruntime (for paraformer model).