FunASR/funasr/export/export_model.py

202 lines
7.0 KiB
Python

import json
from typing import Union, Dict
from pathlib import Path
from typeguard import check_argument_types
import os
import logging
import torch
from funasr.export.models import get_model
import numpy as np
import random
# torch_version = float(".".join(torch.__version__.split(".")[:2]))
# assert torch_version > 1.9
class ASRModelExportParaformer:
def __init__(
self,
cache_dir: Union[Path, str] = None,
onnx: bool = True,
quant: bool = True,
fallback_num: int = 0,
):
assert check_argument_types()
self.set_all_random_seed(0)
if cache_dir is None:
cache_dir = Path.home() / ".cache" / "export"
self.cache_dir = Path(cache_dir)
self.export_config = dict(
feats_dim=560,
onnx=False,
)
print("output dir: {}".format(self.cache_dir))
self.onnx = onnx
self.quant = quant
self.fallback_num = fallback_num
def _export(
self,
model,
tag_name: str = None,
verbose: bool = False,
):
export_dir = self.cache_dir / tag_name.replace(' ', '-')
os.makedirs(export_dir, exist_ok=True)
# export encoder1
self.export_config["model_name"] = "model"
model = get_model(
model,
self.export_config,
)
model.eval()
# self._export_onnx(model, verbose, export_dir)
if self.onnx:
self._export_onnx(model, verbose, export_dir)
else:
self._export_torchscripts(model, verbose, export_dir)
print("output dir: {}".format(export_dir))
def _torch_quantize(self, model):
def _run_calibration_data(m):
# using dummy inputs for a example
dummy_input = model.get_dummy_inputs()
m(*dummy_input)
from torch_quant.module import ModuleFilter
from torch_quant.quantizer import Backend, Quantizer
from funasr.export.models.modules.decoder_layer import DecoderLayerSANM
from funasr.export.models.modules.encoder_layer import EncoderLayerSANM
module_filter = ModuleFilter(include_classes=[EncoderLayerSANM, DecoderLayerSANM])
module_filter.exclude_op_types = [torch.nn.Conv1d]
quantizer = Quantizer(
module_filter=module_filter,
backend=Backend.FBGEMM,
)
model.eval()
calib_model = quantizer.calib(model)
_run_calibration_data(calib_model)
if self.fallback_num > 0:
# perform automatic mixed precision quantization
amp_model = quantizer.amp(model)
_run_calibration_data(amp_model)
quantizer.fallback(amp_model, num=self.fallback_num)
print('Fallback layers:')
print('\n'.join(quantizer.module_filter.exclude_names))
quant_model = quantizer.quantize(model)
return quant_model
def _export_torchscripts(self, model, verbose, path, enc_size=None):
if enc_size:
dummy_input = model.get_dummy_inputs(enc_size)
else:
dummy_input = model.get_dummy_inputs()
# model_script = torch.jit.script(model)
model_script = torch.jit.trace(model, dummy_input)
model_script.save(os.path.join(path, f'{model.model_name}.torchscripts'))
if self.quant:
quant_model = self._torch_quantize(model)
model_script = torch.jit.trace(quant_model, dummy_input)
model_script.save(os.path.join(path, f'{model.model_name}_quant.torchscripts'))
def set_all_random_seed(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def export(self,
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
mode: str = 'paraformer',
):
model_dir = tag_name
if model_dir.startswith('damo/'):
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download(model_dir, cache_dir=self.cache_dir)
asr_train_config = os.path.join(model_dir, 'config.yaml')
asr_model_file = os.path.join(model_dir, 'model.pb')
cmvn_file = os.path.join(model_dir, 'am.mvn')
json_file = os.path.join(model_dir, 'configuration.json')
if mode is None:
import json
with open(json_file, 'r') as f:
config_data = json.load(f)
mode = config_data['model']['model_config']['mode']
if mode.startswith('paraformer'):
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
elif mode.startswith('uniasr'):
from funasr.tasks.asr import ASRTaskUniASR as ASRTask
model, asr_train_args = ASRTask.build_model_from_file(
asr_train_config, asr_model_file, cmvn_file, 'cpu'
)
self._export(model, tag_name)
def _export_onnx(self, model, verbose, path, enc_size=None):
if enc_size:
dummy_input = model.get_dummy_inputs(enc_size)
else:
dummy_input = model.get_dummy_inputs()
# model_script = torch.jit.script(model)
model_script = model #torch.jit.trace(model)
model_path = os.path.join(path, f'{model.model_name}.onnx')
torch.onnx.export(
model_script,
dummy_input,
model_path,
verbose=verbose,
opset_version=14,
input_names=model.get_input_names(),
output_names=model.get_output_names(),
dynamic_axes=model.get_dynamic_axes()
)
if self.quant:
from onnxruntime.quantization import QuantType, quantize_dynamic
import onnx
quant_model_path = os.path.join(path, f'{model.model_name}_quant.onnx')
onnx_model = onnx.load(model_path)
nodes = [n.name for n in onnx_model.graph.node]
nodes_to_exclude = [m for m in nodes if 'output' in m]
quantize_dynamic(
model_input=model_path,
model_output=quant_model_path,
op_types_to_quantize=['MatMul'],
per_channel=True,
reduce_range=False,
weight_type=QuantType.QUInt8,
nodes_to_exclude=nodes_to_exclude,
)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--export-dir', type=str, required=True)
parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]')
parser.add_argument('--quantize', action='store_true', help='export quantized model')
parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number')
args = parser.parse_args()
export_model = ASRModelExportParaformer(
cache_dir=args.export_dir,
onnx=args.type == 'onnx',
quant=args.quantize,
fallback_num=args.fallback_num,
)
export_model.export(args.model_name)