mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
272 lines
9.4 KiB
Python
272 lines
9.4 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
# Part of the implementation is borrowed from espnet/espnet.
|
|
|
|
import funasr.models.frontend.eend_ola_feature
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from typeguard import check_argument_types
|
|
from typing import Tuple
|
|
|
|
|
|
def load_cmvn(cmvn_file):
|
|
with open(cmvn_file, 'r', encoding='utf-8') as f:
|
|
lines = f.readlines()
|
|
means_list = []
|
|
vars_list = []
|
|
for i in range(len(lines)):
|
|
line_item = lines[i].split()
|
|
if line_item[0] == '<AddShift>':
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == '<LearnRateCoef>':
|
|
add_shift_line = line_item[3:(len(line_item) - 1)]
|
|
means_list = list(add_shift_line)
|
|
continue
|
|
elif line_item[0] == '<Rescale>':
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == '<LearnRateCoef>':
|
|
rescale_line = line_item[3:(len(line_item) - 1)]
|
|
vars_list = list(rescale_line)
|
|
continue
|
|
means = np.array(means_list).astype(np.float)
|
|
vars = np.array(vars_list).astype(np.float)
|
|
cmvn = np.array([means, vars])
|
|
cmvn = torch.as_tensor(cmvn)
|
|
return cmvn
|
|
|
|
|
|
def apply_cmvn(inputs, cmvn_file): # noqa
|
|
"""
|
|
Apply CMVN with mvn data
|
|
"""
|
|
|
|
device = inputs.device
|
|
dtype = inputs.dtype
|
|
frame, dim = inputs.shape
|
|
|
|
cmvn = load_cmvn(cmvn_file)
|
|
means = np.tile(cmvn[0:1, :dim], (frame, 1))
|
|
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
|
|
inputs += torch.from_numpy(means).type(dtype).to(device)
|
|
inputs *= torch.from_numpy(vars).type(dtype).to(device)
|
|
|
|
return inputs.type(torch.float32)
|
|
|
|
|
|
def apply_lfr(inputs, lfr_m, lfr_n):
|
|
LFR_inputs = []
|
|
T = inputs.shape[0]
|
|
T_lfr = int(np.ceil(T / lfr_n))
|
|
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
|
|
inputs = torch.vstack((left_padding, inputs))
|
|
T = T + (lfr_m - 1) // 2
|
|
for i in range(T_lfr):
|
|
if lfr_m <= T - i * lfr_n:
|
|
LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
|
|
else: # process last LFR frame
|
|
num_padding = lfr_m - (T - i * lfr_n)
|
|
frame = (inputs[i * lfr_n:]).view(-1)
|
|
for _ in range(num_padding):
|
|
frame = torch.hstack((frame, inputs[-1]))
|
|
LFR_inputs.append(frame)
|
|
LFR_outputs = torch.vstack(LFR_inputs)
|
|
return LFR_outputs.type(torch.float32)
|
|
|
|
|
|
class WavFrontend(AbsFrontend):
|
|
"""Conventional frontend structure for ASR.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
cmvn_file: str = None,
|
|
fs: int = 16000,
|
|
window: str = 'hamming',
|
|
n_mels: int = 80,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
filter_length_min: int = -1,
|
|
filter_length_max: int = -1,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
dither: float = 1.0,
|
|
snip_edges: bool = True,
|
|
upsacle_samples: bool = True,
|
|
):
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
self.fs = fs
|
|
self.window = window
|
|
self.n_mels = n_mels
|
|
self.frame_length = frame_length
|
|
self.frame_shift = frame_shift
|
|
self.filter_length_min = filter_length_min
|
|
self.filter_length_max = filter_length_max
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.cmvn_file = cmvn_file
|
|
self.dither = dither
|
|
self.snip_edges = snip_edges
|
|
self.upsacle_samples = upsacle_samples
|
|
|
|
def output_size(self) -> int:
|
|
return self.n_mels * self.lfr_m
|
|
|
|
def forward(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
if self.upsacle_samples:
|
|
waveform = waveform * (1 << 15)
|
|
waveform = waveform.unsqueeze(0)
|
|
mat = kaldi.fbank(waveform,
|
|
num_mel_bins=self.n_mels,
|
|
frame_length=self.frame_length,
|
|
frame_shift=self.frame_shift,
|
|
dither=self.dither,
|
|
energy_floor=0.0,
|
|
window_type=self.window,
|
|
sample_frequency=self.fs,
|
|
snip_edges=self.snip_edges)
|
|
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
|
|
if self.cmvn_file is not None:
|
|
mat = apply_cmvn(mat, self.cmvn_file)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats,
|
|
batch_first=True,
|
|
padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
def forward_fbank(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
waveform = waveform * (1 << 15)
|
|
waveform = waveform.unsqueeze(0)
|
|
mat = kaldi.fbank(waveform,
|
|
num_mel_bins=self.n_mels,
|
|
frame_length=self.frame_length,
|
|
frame_shift=self.frame_shift,
|
|
dither=self.dither,
|
|
energy_floor=0.0,
|
|
window_type=self.window,
|
|
sample_frequency=self.fs)
|
|
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats,
|
|
batch_first=True,
|
|
padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
def forward_lfr_cmvn(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
mat = input[i, :input_lengths[i], :]
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
|
|
if self.cmvn_file is not None:
|
|
mat = apply_cmvn(mat, self.cmvn_file)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats,
|
|
batch_first=True,
|
|
padding_value=0.0)
|
|
return feats_pad, feats_lens
|
|
|
|
|
|
class WavFrontendMel23(AbsFrontend):
|
|
"""Conventional frontend structure for ASR.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fs: int = 16000,
|
|
window: str = 'hamming',
|
|
n_mels: int = 80,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
filter_length_min: int = -1,
|
|
filter_length_max: int = -1,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
dither: float = 1.0,
|
|
snip_edges: bool = True,
|
|
upsacle_samples: bool = True,
|
|
):
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
self.fs = fs
|
|
self.window = window
|
|
self.n_mels = n_mels
|
|
self.frame_length = frame_length
|
|
self.frame_shift = frame_shift
|
|
self.filter_length_min = filter_length_min
|
|
self.filter_length_max = filter_length_max
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.cmvn_file = cmvn_file
|
|
self.dither = dither
|
|
self.snip_edges = snip_edges
|
|
self.upsacle_samples = upsacle_samples
|
|
|
|
def output_size(self) -> int:
|
|
return self.n_mels * self.lfr_m
|
|
|
|
def forward(
|
|
self,
|
|
input: torch.Tensor,
|
|
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = input.size(0)
|
|
feats = []
|
|
feats_lens = []
|
|
for i in range(batch_size):
|
|
waveform_length = input_lengths[i]
|
|
waveform = input[i][:waveform_length]
|
|
waveform = waveform.unsqueeze(0).numpy()
|
|
mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
|
|
mat = eend_ola_feature.transform(mat)
|
|
mat = mat.splice(mat, context_size=self.lfr_m)
|
|
mat = mat[::self.lfr_n]
|
|
mat = torch.from_numpy(mat)
|
|
feat_length = mat.size(0)
|
|
feats.append(mat)
|
|
feats_lens.append(feat_length)
|
|
|
|
feats_lens = torch.as_tensor(feats_lens)
|
|
feats_pad = pad_sequence(feats,
|
|
batch_first=True,
|
|
padding_value=0.0)
|
|
return feats_pad, feats_lens
|