FunASR/examples/industrial_data_pretraining/fsmn_vad_streaming/demo.py
zhifu gao 861147c730
Dev gzf exp (#1654)
* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* whisper

* whisper

* update style

* update style

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
2024-04-24 16:03:38 +08:00

49 lines
1.3 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from funasr import AutoModel
wav_file = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav"
model = AutoModel(model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch")
res = model.generate(input=wav_file)
print(res)
# [[beg1, end1], [beg2, end2], .., [begN, endN]]
# beg/end: ms
import soundfile
import os
wav_file = os.path.join(model.model_path, "example/vad_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_size = 200 # ms
chunk_stride = int(chunk_size * sample_rate / 1000)
cache = {}
total_chunk_num = int(len((speech) - 1) / chunk_stride + 1)
for i in range(total_chunk_num):
speech_chunk = speech[i * chunk_stride : (i + 1) * chunk_stride]
is_final = i == total_chunk_num - 1
res = model.generate(
input=speech_chunk,
cache=cache,
is_final=is_final,
chunk_size=chunk_size,
disable_pbar=True,
)
# print(res)
if len(res[0]["value"]):
print(res)
# 1. [[beg1, end1], [beg2, end2], .., [begN, endN]]; [[beg, end]]; [[beg1, end1], [beg2, end2]]
# 2. [[beg, -1]]
# 3. [[-1, end]]
# beg/end: ms