FunASR/egs/mars/sd/scripts/extract_nonoverlap_segments_v2.py
2023-02-16 15:58:05 +08:00

120 lines
4.6 KiB
Python

import numpy as np
import os
import sys
import argparse
from funasr.utils.job_runner import MultiProcessRunnerV3
from funasr.utils.misc import load_scp_as_list, load_scp_as_dict
import librosa
import soundfile as sf
from copy import deepcopy
import json
from tqdm import tqdm
class MyRunner(MultiProcessRunnerV3):
def prepare(self, parser):
assert isinstance(parser, argparse.ArgumentParser)
parser.add_argument("wav_scp", type=str)
parser.add_argument("rttm", type=str)
parser.add_argument("out_dir", type=str)
parser.add_argument("--min_dur", type=float, default=2.0)
parser.add_argument("--max_spk_num", type=int, default=4)
args = parser.parse_args()
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
wav_scp = load_scp_as_list(args.wav_scp)
meeting2rttms = {}
for one_line in open(args.rttm, "rt"):
parts = [x for x in one_line.strip().split(" ") if x != ""]
mid, st, dur, spk_name = parts[1], float(parts[3]), float(parts[4]), parts[7]
if mid not in meeting2rttms:
meeting2rttms[mid] = []
meeting2rttms[mid].append(one_line)
task_list = [(mid, wav_path, meeting2rttms[mid]) for (mid, wav_path) in wav_scp]
return task_list, None, args
def post(self, result_list, args):
count = [0, 0]
for result in result_list:
count[0] += result[0]
count[1] += result[1]
print("Found {} speakers, extracted {}.".format(count[1], count[0]))
# SPEAKER R8001_M8004_MS801 1 6.90 11.39 <NA> <NA> 1 <NA> <NA>
def calc_multi_label(rttms, length, sr=8000, max_spk_num=4):
labels = np.zeros([max_spk_num, length], int)
spk_list = []
for one_line in rttms:
parts = [x for x in one_line.strip().split(" ") if x != ""]
mid, st, dur, spk_name = parts[1], float(parts[3]), float(parts[4]), parts[7]
spk_name = spk_name.replace("spk", "").replace(mid, "").replace("-", "")
if spk_name.isdigit():
spk_name = "{}_S{:03d}".format(mid, int(spk_name))
else:
spk_name = "{}_{}".format(mid, spk_name)
if spk_name not in spk_list:
spk_list.append(spk_name)
st, dur = int(st*sr), int(dur*sr)
idx = spk_list.index(spk_name)
labels[idx, st:st+dur] = 1
return labels, spk_list
def get_nonoverlap_turns(multi_label, spk_list):
turns = []
label = np.sum(multi_label, axis=0) == 1
spk, in_turn, st = None, False, 0
for i in range(len(label)):
if not in_turn and label[i]:
st, in_turn = i, True
spk = spk_list[np.argmax(multi_label[:, i], axis=0)]
if in_turn:
if not label[i]:
in_turn = False
turns.append([st, i, spk])
elif label[i] and spk != spk_list[np.argmax(multi_label[:, i], axis=0)]:
turns.append([st, i, spk])
st, in_turn = i, True
spk = spk_list[np.argmax(multi_label[:, i], axis=0)]
if in_turn:
turns.append([st, len(label), spk])
return turns
def process(task_args):
task_id, task_list, _, args = task_args
spk_count = [0, 0]
for mid, wav_path, rttms in task_list:
wav, sr = sf.read(wav_path, dtype="int16")
assert sr == args.sr, "args.sr {}, file sr {}".format(args.sr, sr)
multi_label, spk_list = calc_multi_label(rttms, len(wav), args.sr, args.max_spk_num)
turns = get_nonoverlap_turns(multi_label, spk_list)
extracted_spk = []
count = 1
for st, ed, spk in tqdm(turns, total=len(turns), ascii=True, disable=args.no_pbar):
if (ed - st) >= args.min_dur * args.sr:
seg = wav[st: ed]
save_path = os.path.join(args.out_dir, mid, spk, "{}_U{:04d}.wav".format(spk, count))
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
sf.write(save_path, seg.astype(np.int16), args.sr, "PCM_16", "LITTLE", "WAV", True)
count += 1
if spk not in extracted_spk:
extracted_spk.append(spk)
if len(extracted_spk) != len(spk_list):
print("{}: Found {} speakers, but only extracted {}. {} are filtered due to min_dur".format(
mid, len(spk_list), len(extracted_spk), " ".join([x for x in spk_list if x not in extracted_spk])
))
spk_count[0] += len(extracted_spk)
spk_count[1] += len(spk_list)
return spk_count
if __name__ == '__main__':
my_runner = MyRunner(process)
my_runner.run()