FunASR/funasr/datasets/audio_datasets/index_ds.py
zhifu gao 824377d2aa
Dev gzf exp (#1626)
* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune
2024-04-17 16:59:29 +08:00

146 lines
5.6 KiB
Python

import os
import json
import torch
import logging
import concurrent.futures
import librosa
import torch.distributed as dist
from funasr.register import tables
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
def __init__(self, path):
super().__init__()
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
self.contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data["prompt"]
source = data["source"]
target = data["target"]
source_len = data["source_len"]
target_len = data["target_len"]
contents.append({"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
)
self.contents = []
total_num = len(contents)
try:
rank = dist.get_rank()
world_size = dist.get_world_size()
except:
rank = 0
world_size = 1
logging.warning("distributed is not initialized, only single shard")
num_per_rank = total_num // world_size
# rank = 0
# import ipdb; ipdb.set_trace()
self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
logging.info("in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(rank, len(self.contents), len(contents)))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
try:
data = self.contents[index]
except:
print(index)
return data
def get_source_len(self, data_dict):
return data_dict["source_len"]
def get_target_len(self, data_dict):
return data_dict["target_len"] if "target_len" in data_dict else 0
@tables.register("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
class IndexDSJsonlRankFull(torch.utils.data.Dataset):
def __init__(self, path: str, **kwargs):
super().__init__()
self.max_source_length = kwargs.get("max_source_length", 2048)
self.min_source_length = kwargs.get("min_source_length", 0)
self.max_target_length = kwargs.get("max_target_length", 2048)
self.min_target_length = kwargs.get("min_target_length", 0)
if isinstance(path, (list, tuple)): # wav.scp, text.txt/text.trans
from funasr.datasets.audio_datasets.scp2jsonl import gen_jsonl_from_wav_text_list
jsonl_outdir = os.path.dirname(path[0])
jsonl_name = "datalist_train.jsonl" if kwargs.get("is_training", True) else "datalist_val.jsonl"
jsonl_file_out = os.path.join(jsonl_outdir, jsonl_name)
if not os.path.exists(jsonl_file_out):
print(f"datalist is: {path}, generate jsonl from it")
gen_jsonl_from_wav_text_list(path, jsonl_file_out=jsonl_file_out, **kwargs)
path = jsonl_file_out
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data.get("prompt", "<ASR>")
source = data["source"]
target = data["target"]
source_len = data.get("source_len", 1)
target_len = data.get("target_len", 0)
if "aishell" in source:
target = target.replace(" ", "")
if source_len < self.min_source_length or source_len > self.max_source_length:
continue
if target_len < self.min_target_length or target_len > self.max_target_length:
continue
contents_i = {"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
text_language = data.get("text_language", None)
if text_language is not None:
contents_i["text_language"] = text_language
audio_language = data.get("audio_language", None)
if audio_language is not None:
contents_i["audio_language"] = audio_language
contents.append(contents_i)
self.contents = contents
logging.info(
"total_num of samplers across ranks: {}".format(len(self.contents)))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
try:
data = self.contents[index]
except:
print(index)
return data
def get_source_len(self, data_dict):
return data_dict.get("source_len", 1)
def get_target_len(self, data_dict):
return data_dict.get("target_len", 0)