FunASR是一个基础语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复、语言模型、说话人验证、说话人分离和多人对话语音识别等。FunASR提供了便捷的脚本和教程,支持预训练好的模型的推理与微调。
Go to file
2023-04-19 14:39:22 +08:00
.github/workflows docs 2023-04-19 14:39:22 +08:00
docs docs 2023-04-19 14:39:22 +08:00
docs_m2met2 update m2met2 pages 2023-04-18 18:47:06 +08:00
docs_m2met2_cn update m2met2 pages 2023-04-18 18:47:06 +08:00
egs merge many functions 2023-04-17 16:09:23 +08:00
egs_modelscope Merge pull request #355 from alibaba-damo-academy/dev_dzh 2023-04-14 15:43:22 +08:00
fun_text_processing update version 0.1.6 2023-01-16 18:46:40 +08:00
funasr docs 2023-04-19 14:39:22 +08:00
tests update 2023-04-13 10:17:36 +08:00
.gitignore docs 2023-04-17 14:33:53 +08:00
LICENSE create 2022-11-26 21:56:51 +08:00
README.md Merge branch 'dev_lyh' into main 2023-04-18 19:19:48 +08:00
setup.py readme 2023-04-15 00:18:10 +08:00

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

FunASR hopes to build a bridge between academic research and industrial applications on speech recognition. By supporting the training & finetuning of the industrial-grade speech recognition model released on ModelScope, researchers and developers can conduct research and production of speech recognition models more conveniently, and promote the development of speech recognition ecology. ASR for Fun

News | Highlights | Installation | Docs_EN | Tutorial | Papers | Runtime | Model Zoo | Contact

M2MET2.0 Guidence_CN | M2MET2.0 Guidence_EN

Multi-Channel Multi-Party Meeting Transcription 2.0 (M2MET2.0) Challenge

We are pleased to announce that the M2MeT2.0 challenge will be held in the near future. The baseline system is conducted on FunASR and is provided as a receipe of AliMeeting corpus. For more details you can see the guidence of M2MET2.0 (CN/EN).

What's new:

For the release notes, please ref to news

Highlights

  • FunASR supports speech recognition(ASR), Multi-talker ASR, Voice Activity Detection(VAD), Punctuation Restoration, Language Models, Speaker Verification and Speaker diarization.
  • We have released large number of academic and industrial pretrained models on ModelScope
  • The pretrained model Paraformer-large obtains the best performance on many tasks in SpeechIO leaderboard
  • FunASR supplies a easy-to-use pipeline to finetune pretrained models from ModelScope
  • Compared to Espnet framework, the training speed of large-scale datasets in FunASR is much faster owning to the optimized dataloader.

Installation

Install from pip

pip install -U funasr
# For the users in China, you could install with the command:
# pip install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple

Or install from source code

git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple

If you want to use the pretrained models in ModelScope, you should install the modelscope:

pip install -U modelscope
# For the users in China, you could install with the command:
# pip install -U modelscope -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -i https://mirror.sjtu.edu.cn/pypi/web/simple

For more details, please ref to installation

Contact

If you have any questions about FunASR, please contact us by

Dingding group Wechat group

Contributors

Acknowledge

  1. We borrowed a lot of code from Kaldi for data preparation.
  2. We borrowed a lot of code from ESPnet. FunASR follows up the training and finetuning pipelines of ESPnet.
  3. We referred Wenet for building dataloader for large scale data training.
  4. We acknowledge DeepScience for contributing the grpc service.

License

This project is licensed under the The MIT License. FunASR also contains various third-party components and some code modified from other repos under other open source licenses.

Citations

@inproceedings{gao2020universal,
  title={Universal ASR: Unifying Streaming and Non-Streaming ASR Using a Single Encoder-Decoder Model},
  author={Gao, Zhifu and Zhang, Shiliang and Lei, Ming and McLoughlin, Ian},
  booktitle={arXiv preprint arXiv:2010.14099},
  year={2020}
}

@inproceedings{gao2022paraformer,
  title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
  author={Gao, Zhifu and Zhang, Shiliang and McLoughlin, Ian and Yan, Zhijie},
  booktitle={INTERSPEECH},
  year={2022}
}
@inproceedings{Shi2023AchievingTP,
  title={Achieving Timestamp Prediction While Recognizing with Non-Autoregressive End-to-End ASR Model},
  author={Xian Shi and Yanni Chen and Shiliang Zhang and Zhijie Yan},
  booktitle={arXiv preprint arXiv:2301.12343}
  year={2023}
}