mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
283 lines
9.2 KiB
C++
283 lines
9.2 KiB
C++
#include "precomp.h"
|
|
|
|
/**
|
|
|
|
name: input
|
|
type: int64[batch_size,feats_length]
|
|
|
|
name: text_lengths
|
|
type: int32[batch_size]
|
|
**/
|
|
|
|
|
|
|
|
|
|
CRapidPuncOnnx::CRapidPuncOnnx(const char* szModelDir, int nNumThread)
|
|
{
|
|
|
|
for (size_t i=0; i< INPUT_NUM; i++)
|
|
{
|
|
m_szInputNames.push_back(INPUT_NAMES[i]);
|
|
}
|
|
|
|
m_szOutputNames.push_back(OUTPUT_NAME);
|
|
|
|
LoadModel(szModelDir, nNumThread);
|
|
}
|
|
|
|
CRapidPuncOnnx::~CRapidPuncOnnx()
|
|
{
|
|
|
|
|
|
if (m_session)
|
|
{
|
|
delete m_session;
|
|
m_session = nullptr;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void CRapidPuncOnnx::LoadModel(const std::string& model_dir, int nNumThread)
|
|
{
|
|
|
|
sessionOptions.SetInterOpNumThreads(nNumThread);
|
|
sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
|
|
|
|
|
|
string strModelPath = model_dir + MODEL_FILE;
|
|
|
|
string strYamlPath = model_dir + YAML_FILE;
|
|
#ifdef _WIN32
|
|
std::wstring detPath = strToWstr(strModelPath);
|
|
m_session = new Ort::Session(env, detPath.c_str(), sessionOptions);
|
|
#else
|
|
m_session = new Ort::Session(env, strModelPath.c_str(), sessionOptions);
|
|
#endif
|
|
|
|
|
|
m_Tokenizer.OpenYaml(strYamlPath.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
# Search for the last Period/QuestionMark as cache
|
|
if mini_sentence_i < len(mini_sentences) - 1:
|
|
sentenceEnd = -1
|
|
last_comma_index = -1
|
|
for i in range(len(punctuations) - 2, 1, -1):
|
|
if self.punc_list[punctuations[i]] == "¡£" or self.punc_list[punctuations[i]] == "£¿":
|
|
sentenceEnd = i
|
|
break
|
|
if last_comma_index < 0 and self.punc_list[punctuations[i]] == "£¬":
|
|
last_comma_index = i
|
|
|
|
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
|
# The sentence it too long, cut off at a comma.
|
|
sentenceEnd = last_comma_index
|
|
punctuations[sentenceEnd] = self.period
|
|
cache_sent = mini_sentence[sentenceEnd + 1:]
|
|
cache_sent_id = mini_sentence_id[sentenceEnd + 1:].tolist()
|
|
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
|
punctuations = punctuations[0:sentenceEnd + 1]
|
|
|
|
new_mini_sentence_punc += [int(x) for x in punctuations]
|
|
words_with_punc = []
|
|
for i in range(len(mini_sentence)):
|
|
if i > 0:
|
|
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
|
|
mini_sentence[i] = " " + mini_sentence[i]
|
|
words_with_punc.append(mini_sentence[i])
|
|
if self.punc_list[punctuations[i]] != "_":
|
|
words_with_punc.append(self.punc_list[punctuations[i]])
|
|
new_mini_sentence += "".join(words_with_punc)
|
|
# Add Period for the end of the sentence
|
|
new_mini_sentence_out = new_mini_sentence
|
|
new_mini_sentence_punc_out = new_mini_sentence_punc
|
|
if mini_sentence_i == len(mini_sentences) - 1:
|
|
if new_mini_sentence[-1] == "£¬" or new_mini_sentence[-1] == "¡¢":
|
|
new_mini_sentence_out = new_mini_sentence[:-1] + "¡£"
|
|
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
|
elif new_mini_sentence[-1] != "¡£" and new_mini_sentence[-1] != "£¿":
|
|
new_mini_sentence_out = new_mini_sentence + "¡£"
|
|
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
|
*/
|
|
|
|
|
|
|
|
string CRapidPuncOnnx::AddPunc(const char* szInput)
|
|
{
|
|
|
|
string strResult;
|
|
vector<string> strOut;
|
|
vector<int> InputData;
|
|
m_Tokenizer.Tokenize(szInput, strOut, InputData);
|
|
|
|
int nTotalBatch = ceil((float)InputData.size() / TOKEN_LEN);
|
|
int nCurBatch = -1;
|
|
int nSentEnd = -1, nLastCommaIndex = -1;
|
|
vector<int64_t> RemainIDs; //
|
|
vector<string> RemainStr; //
|
|
vector<int> NewPunctuation; //
|
|
vector<string> NewString; //
|
|
vector<string> NewSentenceOut;
|
|
vector<int> NewPuncOut;
|
|
int nDiff = 0;
|
|
for (size_t i = 0; i < InputData.size(); i += TOKEN_LEN)
|
|
{
|
|
nDiff = (i + TOKEN_LEN) < InputData.size() ? (0) : (i + TOKEN_LEN - InputData.size());
|
|
vector<int64_t> InputIDs(InputData.begin() + i, InputData.begin() + i + TOKEN_LEN - nDiff);
|
|
vector<string> InputStr(strOut.begin() + i, strOut.begin() + i + TOKEN_LEN - nDiff);
|
|
|
|
InputIDs.insert(InputIDs.begin(), RemainIDs.begin(), RemainIDs.end()); // RemainIDs+InputIDs;
|
|
InputStr.insert(InputStr.begin(), RemainStr.begin(), RemainStr.end()); // RemainStr+InputStr;
|
|
|
|
auto Punction = Infer(InputIDs);
|
|
|
|
nCurBatch = i / TOKEN_LEN;
|
|
|
|
|
|
if (nCurBatch < nTotalBatch - 1) // not the last minisetence
|
|
{
|
|
nSentEnd = -1;
|
|
nLastCommaIndex = -1;
|
|
for (int nIndex = Punction.size() - 2; nIndex > 0; nIndex--)
|
|
{
|
|
if (m_Tokenizer.ID2Punc(Punction[nIndex]) == m_Tokenizer.ID2Punc(PERIOD_INDEX) || m_Tokenizer.ID2Punc(Punction[nIndex]) == m_Tokenizer.ID2Punc(QUESTION_INDEX))
|
|
{
|
|
nSentEnd = nIndex;
|
|
break;
|
|
}
|
|
|
|
if (nLastCommaIndex < 0 && m_Tokenizer.ID2Punc(Punction[nIndex]) == m_Tokenizer.ID2Punc(COMMA_INDEX))
|
|
{
|
|
nLastCommaIndex = nIndex;
|
|
}
|
|
}
|
|
|
|
if (nSentEnd < 0 && InputStr.size() > CACHE_POP_TRIGGER_LIMIT && nLastCommaIndex > 0)
|
|
{
|
|
nSentEnd = nLastCommaIndex;
|
|
Punction[nSentEnd] = PERIOD_INDEX;
|
|
}
|
|
|
|
RemainStr.assign(InputStr.begin() + nSentEnd + 1, InputStr.end());
|
|
RemainIDs.assign(InputIDs.begin() + nSentEnd + 1, InputIDs.end());
|
|
|
|
InputStr.assign(InputStr.begin(), InputStr.begin() + nSentEnd + 1); // minit_sentence
|
|
Punction.assign(Punction.begin(), Punction.begin() + nSentEnd + 1);
|
|
|
|
}
|
|
|
|
NewPunctuation.insert(NewPunctuation.end(), Punction.begin(), Punction.end());
|
|
vector<string> WordWithPunc;
|
|
|
|
for (int i = 0; i < InputStr.size(); i++)
|
|
{
|
|
|
|
if (i > 0 && !(InputStr[i][0] & 0x80) && (i + 1) <InputStr.size() && !(InputStr[i+1][0] & 0x80))// ÖмäµÄÓ¢ÎÄ£¿
|
|
{
|
|
InputStr[i] = InputStr[i]+ " ";
|
|
}
|
|
WordWithPunc.push_back(InputStr[i]);
|
|
|
|
if (Punction[i] != NOTPUNC_INDEX) // Ï»®Ïß
|
|
{
|
|
WordWithPunc.push_back(m_Tokenizer.ID2Punc(Punction[i]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
NewString.insert(NewString.end(), WordWithPunc.begin(), WordWithPunc.end()); // new_mini_sentence += "".join(words_with_punc)
|
|
|
|
NewSentenceOut = NewString;
|
|
NewPuncOut = NewPunctuation;
|
|
// last mini sentence
|
|
if(nCurBatch == nTotalBatch - 1)
|
|
{
|
|
if (NewString[NewString.size() - 1] == m_Tokenizer.ID2Punc(COMMA_INDEX) || NewString[NewString.size() - 1] == m_Tokenizer.ID2Punc(DUN_INDEX))
|
|
{
|
|
NewSentenceOut.assign(NewString.begin(), NewString.end() - 1);
|
|
NewSentenceOut.push_back(m_Tokenizer.ID2Punc(PERIOD_INDEX));
|
|
|
|
NewPuncOut.assign(NewPunctuation.begin(), NewPunctuation.end() - 1);
|
|
NewPuncOut.push_back(PERIOD_INDEX);
|
|
|
|
}
|
|
else if (NewString[NewString.size() - 1] == m_Tokenizer.ID2Punc(PERIOD_INDEX) && NewString[NewString.size() - 1] == m_Tokenizer.ID2Punc(QUESTION_INDEX))
|
|
{
|
|
NewSentenceOut = NewString;
|
|
NewSentenceOut.push_back(m_Tokenizer.ID2Punc(PERIOD_INDEX));
|
|
NewPuncOut = NewPunctuation;
|
|
NewPuncOut.push_back(PERIOD_INDEX);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto& item : NewSentenceOut)
|
|
strResult += item;
|
|
|
|
return strResult;
|
|
}
|
|
|
|
|
|
|
|
vector<int> CRapidPuncOnnx::Infer(vector<int64_t> InputData)
|
|
{
|
|
|
|
Ort::RunOptions run_option;
|
|
|
|
vector<int> punction;
|
|
std::array<int64_t, 2> input_shape_{ 1,(int64_t)InputData.size()};
|
|
Ort::Value onnx_input = Ort::Value::CreateTensor<int64_t>(m_memoryInfo,
|
|
InputData.data(),
|
|
InputData.size(),
|
|
input_shape_.data(),
|
|
input_shape_.size());
|
|
|
|
std::array<int32_t,1> text_lengths{ (int32_t)InputData.size() };
|
|
std::array<int64_t,1> text_lengths_dim{ 1 };
|
|
Ort::Value onnx_text_lengths = Ort::Value::CreateTensor(
|
|
m_memoryInfo,
|
|
text_lengths.data(),
|
|
text_lengths.size() * sizeof(int32_t),
|
|
text_lengths_dim.data(),
|
|
text_lengths_dim.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32);
|
|
std::vector<Ort::Value> input_onnx;
|
|
input_onnx.emplace_back(std::move(onnx_input));
|
|
input_onnx.emplace_back(std::move(onnx_text_lengths));
|
|
|
|
try {
|
|
|
|
auto outputTensor = m_session->Run(run_option, m_szInputNames.data(), input_onnx.data(), m_szInputNames.size(), m_szOutputNames.data(), m_szOutputNames.size());
|
|
std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();
|
|
|
|
|
|
int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1, std::multiplies<int64_t>());
|
|
float * floatData = outputTensor[0].GetTensorMutableData<float>();
|
|
|
|
for (int i = 0; i < outputCount; i += CANDIDATE_NUM)
|
|
{
|
|
int index = argmax(floatData + i, floatData + i + CANDIDATE_NUM-1);
|
|
punction.push_back(index);
|
|
}
|
|
|
|
}
|
|
catch (...)
|
|
{
|
|
|
|
|
|
}
|
|
|
|
|
|
return punction;
|
|
}
|
|
|
|
|
|
|