mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
85 lines
3.2 KiB
Python
85 lines
3.2 KiB
Python
from dataclasses import dataclass
|
|
from typing import Dict
|
|
from typing import Iterable, Optional
|
|
import time
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch import nn
|
|
import whisper
|
|
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
|
|
@tables.register("model_classes", "QwenAudioWarp")
|
|
class WhisperWarp(nn.Module):
|
|
def __init__(self, whisper_dims: dict, **kwargs):
|
|
super().__init__()
|
|
hub = kwargs.get("hub", "funasr")
|
|
if hub == "openai":
|
|
init_param_path = kwargs.get("init_param_path", "large-v3")
|
|
model = whisper.load_model(init_param_path)
|
|
else:
|
|
dims = whisper.model.ModelDimensions(**whisper_dims)
|
|
model = whisper.model.Whisper(dims=dims)
|
|
|
|
self.model = model
|
|
|
|
def forward(self, ):
|
|
pass
|
|
|
|
def inference(self,
|
|
data_in,
|
|
data_lengths=None,
|
|
key: list = None,
|
|
tokenizer=None,
|
|
frontend=None,
|
|
**kwargs,
|
|
):
|
|
if kwargs.get("batch_size", 1) > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
|
|
meta_data = {}
|
|
if isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank": # fbank
|
|
speech, speech_lengths = data_in, data_lengths
|
|
if len(speech.shape) < 3:
|
|
speech = speech[None, :, :]
|
|
if speech_lengths is None:
|
|
speech_lengths = speech.shape[1]
|
|
else:
|
|
# extract fbank feats
|
|
time1 = time.perf_counter()
|
|
audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000),
|
|
data_type=kwargs.get("data_type", "sound"),
|
|
tokenizer=tokenizer)
|
|
time2 = time.perf_counter()
|
|
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
|
frontend=frontend)
|
|
time3 = time.perf_counter()
|
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
frame_shift = frontend.frame_shift if hasattr(frontend, "frame_shift") else 10
|
|
lfr_n = frontend.lfr_n if hasattr(frontend, "lfr_n") else 1
|
|
meta_data["batch_data_time"] = speech_lengths.sum().item() * frame_shift * lfr_n / 1000
|
|
|
|
speech = speech.to(device=kwargs["device"])[0, :, :]
|
|
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
|
|
# detect the spoken language
|
|
_, probs = self.model.detect_language(speech)
|
|
print(f"Detected language: {max(probs, key=probs.get)}")
|
|
|
|
# decode the audio
|
|
options = whisper.DecodingOptions(language=kwargs.get("language", None), fp16=False)
|
|
result = whisper.decode(self.model, speech, options)
|
|
|
|
results = []
|
|
result_i = {"key": key[0], "text": result.text}
|
|
|
|
results.append(result_i)
|
|
|
|
return results, meta_data
|
|
|