mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
537 lines
18 KiB
Python
537 lines
18 KiB
Python
"""
|
|
Author: Speech Lab, Alibaba Group, China
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
|
|
from funasr.datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.preprocessor import CommonPreprocessor
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.e2e_asr import ASRModel
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34, ResNet34_SP_L2Reg
|
|
from funasr.models.pooling.statistic_pooling import StatisticPooling
|
|
from funasr.models.decoder.sv_decoder import DenseDecoder
|
|
from funasr.models.e2e_sv import ESPnetSVModel
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
|
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
|
HuggingFaceTransformersPostEncoder, # noqa: H301
|
|
)
|
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
|
from funasr.models.preencoder.linear import LinearProjection
|
|
from funasr.models.preencoder.sinc import LightweightSincConvs
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.tasks.abs_task import AbsTask
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.models.base_model import FunASRModel
|
|
from funasr.train.class_choices import ClassChoices
|
|
from funasr.train.trainer import Trainer
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import int_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str_or_none
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
espnet=ESPnetSVModel,
|
|
),
|
|
type_check=FunASRModel,
|
|
default="espnet",
|
|
)
|
|
preencoder_choices = ClassChoices(
|
|
name="preencoder",
|
|
classes=dict(
|
|
sinc=LightweightSincConvs,
|
|
linear=LinearProjection,
|
|
),
|
|
type_check=AbsPreEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
resnet34=ResNet34,
|
|
resnet34_sp_l2reg=ResNet34_SP_L2Reg,
|
|
rnn=RNNEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="resnet34",
|
|
)
|
|
postencoder_choices = ClassChoices(
|
|
name="postencoder",
|
|
classes=dict(
|
|
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
|
),
|
|
type_check=AbsPostEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
pooling_choices = ClassChoices(
|
|
name="pooling_type",
|
|
classes=dict(
|
|
statistic=StatisticPooling,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="statistic",
|
|
)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
dense=DenseDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="dense",
|
|
)
|
|
|
|
|
|
class SVTask(AbsTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --postencoder and --postencoder_conf
|
|
postencoder_choices,
|
|
# --pooling and --pooling_conf
|
|
pooling_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(description="Task related")
|
|
|
|
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
|
# to provide --print_config mode. Instead of it, do as
|
|
required = parser.get_default("required")
|
|
required += ["token_list"]
|
|
|
|
group.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to speaker name",
|
|
)
|
|
group.add_argument(
|
|
"--init",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The initialization method",
|
|
choices=[
|
|
"chainer",
|
|
"xavier_uniform",
|
|
"xavier_normal",
|
|
"kaiming_uniform",
|
|
"kaiming_normal",
|
|
None,
|
|
],
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input_size",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="The number of input dimension of the feature",
|
|
)
|
|
|
|
group = parser.add_argument_group(description="Preprocess related")
|
|
group.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Apply preprocessing to data or not",
|
|
)
|
|
parser.add_argument(
|
|
"--cleaner",
|
|
type=str_or_none,
|
|
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
|
default=None,
|
|
help="Apply text cleaning",
|
|
)
|
|
parser.add_argument(
|
|
"--speech_volume_normalize",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="Scale the maximum amplitude to the given value.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of rir scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="THe probability for applying RIR convolution.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability applying Noise adding.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_db_range",
|
|
type=str,
|
|
default="13_15",
|
|
help="The range of noise decibel level.",
|
|
)
|
|
|
|
for class_choices in cls.class_choices_list:
|
|
# Append --<name> and --<name>_conf.
|
|
# e.g. --encoder and --encoder_conf
|
|
class_choices.add_arguments(group)
|
|
|
|
@classmethod
|
|
def build_collate_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Callable[
|
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
|
Tuple[List[str], Dict[str, torch.Tensor]],
|
|
]:
|
|
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
@classmethod
|
|
def build_preprocess_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
|
if args.use_preprocessor:
|
|
retval = CommonPreprocessor(
|
|
train=train,
|
|
token_type=None,
|
|
token_list=None,
|
|
bpemodel=None,
|
|
non_linguistic_symbols=None,
|
|
text_cleaner=args.cleaner,
|
|
g2p_type=None,
|
|
# NOTE(kamo): Check attribute existence for backward compatibility
|
|
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
|
rir_apply_prob=args.rir_apply_prob
|
|
if hasattr(args, "rir_apply_prob")
|
|
else 1.0,
|
|
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
|
noise_apply_prob=args.noise_apply_prob
|
|
if hasattr(args, "noise_apply_prob")
|
|
else 1.0,
|
|
noise_db_range=args.noise_db_range
|
|
if hasattr(args, "noise_db_range")
|
|
else "13_15",
|
|
speech_volume_normalize=args.speech_volume_normalize
|
|
if hasattr(args, "rir_scp")
|
|
else None,
|
|
)
|
|
else:
|
|
retval = None
|
|
return retval
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
if not inference:
|
|
retval = ("speech", "text")
|
|
else:
|
|
# Recognition mode
|
|
retval = ("speech",)
|
|
return retval
|
|
|
|
@classmethod
|
|
def optional_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
retval = ()
|
|
if inference:
|
|
retval = ("ref_speech",)
|
|
return retval
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace) -> ESPnetSVModel:
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Speaker number: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 6. Post-encoder block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
encoder_output_size = encoder.output_size()
|
|
if getattr(args, "postencoder", None) is not None:
|
|
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
|
postencoder = postencoder_class(
|
|
input_size=encoder_output_size, **args.postencoder_conf
|
|
)
|
|
encoder_output_size = postencoder.output_size()
|
|
else:
|
|
postencoder = None
|
|
|
|
# 7. Pooling layer
|
|
pooling_class = pooling_choices.get_class(args.pooling_type)
|
|
pooling_dim = (2, 3)
|
|
eps = 1e-12
|
|
if hasattr(args, "pooling_type_conf"):
|
|
if "pooling_dim" in args.pooling_type_conf:
|
|
pooling_dim = args.pooling_type_conf["pooling_dim"]
|
|
if "eps" in args.pooling_type_conf:
|
|
eps = args.pooling_type_conf["eps"]
|
|
pooling_layer = pooling_class(
|
|
pooling_dim=pooling_dim,
|
|
eps=eps,
|
|
)
|
|
if args.pooling_type == "statistic":
|
|
encoder_output_size *= 2
|
|
|
|
# 8. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 7. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("espnet")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
pooling_layer=pooling_layer,
|
|
decoder=decoder,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# FIXME(kamo): Should be done in model?
|
|
# 8. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
return model
|
|
|
|
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
|
@classmethod
|
|
def build_model_from_file(
|
|
cls,
|
|
config_file: Union[Path, str] = None,
|
|
model_file: Union[Path, str] = None,
|
|
cmvn_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
):
|
|
"""Build model from the files.
|
|
|
|
This method is used for inference or fine-tuning.
|
|
|
|
Args:
|
|
config_file: The yaml file saved when training.
|
|
model_file: The model file saved when training.
|
|
cmvn_file: The cmvn file for front-end
|
|
device: Device type, "cpu", "cuda", or "cuda:N".
|
|
|
|
"""
|
|
if config_file is None:
|
|
assert model_file is not None, (
|
|
"The argument 'model_file' must be provided "
|
|
"if the argument 'config_file' is not specified."
|
|
)
|
|
config_file = Path(model_file).parent / "config.yaml"
|
|
else:
|
|
config_file = Path(config_file)
|
|
|
|
with config_file.open("r", encoding="utf-8") as f:
|
|
args = yaml.safe_load(f)
|
|
if cmvn_file is not None:
|
|
args["cmvn_file"] = cmvn_file
|
|
args = argparse.Namespace(**args)
|
|
model = cls.build_model(args)
|
|
if not isinstance(model, FunASRModel):
|
|
raise RuntimeError(
|
|
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
|
)
|
|
model.to(device)
|
|
model_dict = dict()
|
|
model_name_pth = None
|
|
if model_file is not None:
|
|
logging.info("model_file is {}".format(model_file))
|
|
if device == "cuda":
|
|
device = f"cuda:{torch.cuda.current_device()}"
|
|
model_dir = os.path.dirname(model_file)
|
|
model_name = os.path.basename(model_file)
|
|
if "model.ckpt-" in model_name or ".bin" in model_name:
|
|
if ".bin" in model_name:
|
|
model_name_pth = os.path.join(model_dir, model_name.replace('.bin', '.pb'))
|
|
else:
|
|
model_name_pth = os.path.join(model_dir, "{}.pb".format(model_name))
|
|
if os.path.exists(model_name_pth):
|
|
logging.info("model_file is load from pth: {}".format(model_name_pth))
|
|
model_dict = torch.load(model_name_pth, map_location=device)
|
|
else:
|
|
model_dict = cls.convert_tf2torch(model, model_file)
|
|
model.load_state_dict(model_dict)
|
|
else:
|
|
model_dict = torch.load(model_file, map_location=device)
|
|
model.load_state_dict(model_dict)
|
|
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
|
torch.save(model_dict, model_name_pth)
|
|
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
|
|
|
return model, args
|
|
|
|
@classmethod
|
|
def convert_tf2torch(
|
|
cls,
|
|
model,
|
|
ckpt,
|
|
):
|
|
logging.info("start convert tf model to torch model")
|
|
from funasr.modules.streaming_utils.load_fr_tf import load_tf_dict
|
|
var_dict_tf = load_tf_dict(ckpt)
|
|
var_dict_torch = model.state_dict()
|
|
var_dict_torch_update = dict()
|
|
# speech encoder
|
|
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# pooling layer
|
|
var_dict_torch_update_local = model.pooling_layer.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# decoder
|
|
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
|
|
return var_dict_torch_update
|