FunASR/funasr/bin/tp_inference.py
2023-03-21 19:41:40 +08:00

380 lines
12 KiB
Python

import argparse
import logging
from optparse import Option
import sys
import json
from pathlib import Path
from typing import Any
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
from typing import Dict
import numpy as np
import torch
from typeguard import check_argument_types
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.datasets.preprocessor import LMPreprocessor
from funasr.tasks.asr import ASRTaskAligner as ASRTask
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.text.token_id_converter import TokenIDConverter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
header_colors = '\033[95m'
end_colors = '\033[0m'
global_asr_language: str = 'zh-cn'
global_sample_rate: Union[int, Dict[Any, int]] = {
'audio_fs': 16000,
'model_fs': 16000
}
class SpeechText2Timestamp:
def __init__(
self,
timestamp_infer_config: Union[Path, str] = None,
timestamp_model_file: Union[Path, str] = None,
timestamp_cmvn_file: Union[Path, str] = None,
device: str = "cpu",
dtype: str = "float32",
**kwargs,
):
assert check_argument_types()
# 1. Build ASR model
tp_model, tp_train_args = ASRTask.build_model_from_file(
timestamp_infer_config, timestamp_model_file, device
)
if 'cuda' in device:
tp_model = tp_model.cuda() # force model to cuda
frontend = None
if tp_train_args.frontend is not None:
frontend = WavFrontend(cmvn_file=timestamp_cmvn_file, **tp_train_args.frontend_conf)
logging.info("tp_model: {}".format(tp_model))
logging.info("tp_train_args: {}".format(tp_train_args))
tp_model.to(dtype=getattr(torch, dtype)).eval()
logging.info(f"Decoding device={device}, dtype={dtype}")
self.tp_model = tp_model
self.tp_train_args = tp_train_args
token_list = self.tp_model.token_list
self.converter = TokenIDConverter(token_list=token_list)
self.device = device
self.dtype = dtype
self.frontend = frontend
self.encoder_downsampling_factor = 1
if tp_train_args.encoder_conf["input_layer"] == "conv2d":
self.encoder_downsampling_factor = 4
@torch.no_grad()
def __call__(
self,
speech: Union[torch.Tensor, np.ndarray],
speech_lengths: Union[torch.Tensor, np.ndarray] = None,
text_lengths: Union[torch.Tensor, np.ndarray] = None
):
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
if self.frontend is not None:
feats, feats_len = self.frontend.forward(speech, speech_lengths)
feats = to_device(feats, device=self.device)
feats_len = feats_len.int()
self.tp_model.frontend = None
else:
feats = speech
feats_len = speech_lengths
# lfr_factor = max(1, (feats.size()[-1]//80)-1)
batch = {"speech": feats, "speech_lengths": feats_len}
# a. To device
batch = to_device(batch, device=self.device)
# b. Forward Encoder
enc, enc_len = self.tp_model.encode(**batch)
if isinstance(enc, tuple):
enc = enc[0]
# c. Forward Predictor
_, _, us_alphas, us_peaks = self.tp_model.calc_predictor_timestamp(enc, enc_len, text_lengths.to(self.device)+1)
return us_alphas, us_peaks
def inference(
batch_size: int,
ngpu: int,
log_level: Union[int, str],
data_path_and_name_and_type,
timestamp_infer_config: Optional[str],
timestamp_model_file: Optional[str],
timestamp_cmvn_file: Optional[str] = None,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
num_workers: int = 1,
split_with_space: bool = True,
seg_dict_file: Optional[str] = None,
**kwargs,
):
inference_pipeline = inference_modelscope(
batch_size=batch_size,
ngpu=ngpu,
log_level=log_level,
timestamp_infer_config=timestamp_infer_config,
timestamp_model_file=timestamp_model_file,
timestamp_cmvn_file=timestamp_cmvn_file,
key_file=key_file,
allow_variable_data_keys=allow_variable_data_keys,
output_dir=output_dir,
dtype=dtype,
seed=seed,
num_workers=num_workers,
split_with_space=split_with_space,
seg_dict_file=seg_dict_file,
**kwargs,
)
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
def inference_modelscope(
batch_size: int,
ngpu: int,
log_level: Union[int, str],
# data_path_and_name_and_type,
timestamp_infer_config: Optional[str],
timestamp_model_file: Optional[str],
timestamp_cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
num_workers: int = 1,
split_with_space: bool = True,
seg_dict_file: Optional[str] = None,
**kwargs,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2vadsegment
speechtext2timestamp_kwargs = dict(
timestamp_infer_config=timestamp_infer_config,
timestamp_model_file=timestamp_model_file,
timestamp_cmvn_file=timestamp_cmvn_file,
device=device,
dtype=dtype,
)
logging.info("speechtext2timestamp_kwargs: {}".format(speechtext2timestamp_kwargs))
speechtext2timestamp = SpeechText2Timestamp(**speechtext2timestamp_kwargs)
preprocessor = LMPreprocessor(
train=False,
token_type=speechtext2timestamp.tp_train_args.token_type,
token_list=speechtext2timestamp.tp_train_args.token_list,
bpemodel=None,
text_cleaner=None,
g2p_type=None,
text_name="text",
non_linguistic_symbols=speechtext2timestamp.tp_train_args.non_linguistic_symbols,
split_with_space=split_with_space,
seg_dict_file=seg_dict_file,
)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = ASRTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=preprocessor,
collate_fn=ASRTask.build_collate_fn(speechtext2timestamp.tp_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
tp_result_list = []
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
logging.info("timestamp predicting, utt_id: {}".format(keys))
_batch = {'speech':batch['speech'],
'speech_lengths':batch['speech_lengths'],
'text_lengths':batch['text_lengths']}
us_alphas, us_cif_peak = speechtext2timestamp(**_batch)
for batch_id in range(_bs):
key = keys[batch_id]
token = speechtext2timestamp.converter.ids2tokens(batch['text'][batch_id])
ts_str, ts_list = ts_prediction_lfr6_standard(us_alphas[batch_id], us_cif_peak[batch_id], token, force_time_shift=-3.0)
logging.warning(ts_str)
item = {'key': key, 'value': ts_str, 'timestamp':ts_list}
tp_result_list.append(item)
return tp_result_list
return _forward
def get_parser():
parser = config_argparse.ArgumentParser(
description="Timestamp Prediction Inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=False)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=0,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=False,
action="append",
)
group.add_argument("--raw_inputs", type=list, default=None)
# example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}])
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--timestamp_infer_config",
type=str,
help="VAD infer configuration",
)
group.add_argument(
"--timestamp_model_file",
type=str,
help="VAD model parameter file",
)
group.add_argument(
"--timestamp_cmvn_file",
type=str,
help="Global cmvn file",
)
group = parser.add_argument_group("infer related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument(
"--seg_dict_file",
type=str,
default=None,
help="The batch size for inference",
)
group.add_argument(
"--split_with_space",
type=bool,
default=False,
help="The batch size for inference",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()