mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
441 lines
14 KiB
Python
Executable File
441 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from kaldiio import WriteHelper
|
|
from typeguard import check_argument_types
|
|
from typeguard import check_return_type
|
|
|
|
from funasr.utils.cli_utils import get_commandline_args
|
|
from funasr.tasks.sv import SVTask
|
|
from funasr.tasks.asr import ASRTask
|
|
from funasr.torch_utils.device_funcs import to_device
|
|
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.utils import config_argparse
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str2triple_str
|
|
from funasr.utils.types import str_or_none
|
|
from funasr.utils.misc import statistic_model_parameters
|
|
|
|
class Speech2Xvector:
|
|
"""Speech2Xvector class
|
|
|
|
Examples:
|
|
>>> import soundfile
|
|
>>> speech2xvector = Speech2Xvector("sv_config.yml", "sv.pb")
|
|
>>> audio, rate = soundfile.read("speech.wav")
|
|
>>> speech2xvector(audio)
|
|
[(text, token, token_int, hypothesis object), ...]
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
sv_train_config: Union[Path, str] = None,
|
|
sv_model_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
streaming: bool = False,
|
|
embedding_node: str = "resnet1_dense",
|
|
):
|
|
assert check_argument_types()
|
|
|
|
# TODO: 1. Build SV model
|
|
sv_model, sv_train_args = SVTask.build_model_from_file(
|
|
config_file=sv_train_config,
|
|
model_file=sv_model_file,
|
|
device=device
|
|
)
|
|
logging.info("sv_model: {}".format(sv_model))
|
|
logging.info("model parameter number: {}".format(statistic_model_parameters(sv_model)))
|
|
logging.info("sv_train_args: {}".format(sv_train_args))
|
|
sv_model.to(dtype=getattr(torch, dtype)).eval()
|
|
|
|
self.sv_model = sv_model
|
|
self.sv_train_args = sv_train_args
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.embedding_node = embedding_node
|
|
|
|
@torch.no_grad()
|
|
def calculate_embedding(self, speech: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
|
|
# Input as audio signal
|
|
if isinstance(speech, np.ndarray):
|
|
speech = torch.tensor(speech)
|
|
|
|
# data: (Nsamples,) -> (1, Nsamples)
|
|
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
|
|
# lengths: (1,)
|
|
lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
|
|
batch = {"speech": speech, "speech_lengths": lengths}
|
|
|
|
# a. To device
|
|
batch = to_device(batch, device=self.device)
|
|
|
|
# b. Forward Encoder
|
|
enc, ilens = self.sv_model.encode(**batch)
|
|
|
|
# c. Forward Pooling
|
|
pooling = self.sv_model.pooling_layer(enc)
|
|
|
|
# d. Forward Decoder
|
|
outputs, embeddings = self.sv_model.decoder(pooling)
|
|
|
|
if self.embedding_node not in embeddings:
|
|
raise ValueError("Required embedding node {} not in {}".format(
|
|
self.embedding_node, embeddings.keys()))
|
|
|
|
return embeddings[self.embedding_node]
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self, speech: Union[torch.Tensor, np.ndarray],
|
|
ref_speech: Optional[Union[torch.Tensor, np.ndarray]] = None,
|
|
) -> Tuple[torch.Tensor, Union[torch.Tensor, None], Union[torch.Tensor, None]]:
|
|
"""Inference
|
|
|
|
Args:
|
|
speech: Input speech data
|
|
ref_speech: Reference speech to compare
|
|
Returns:
|
|
embedding, ref_embedding, similarity_score
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
self.sv_model.eval()
|
|
embedding = self.calculate_embedding(speech)
|
|
ref_emb, score = None, None
|
|
if ref_speech is not None:
|
|
ref_emb = self.calculate_embedding(ref_speech)
|
|
score = torch.cosine_similarity(embedding, ref_emb)
|
|
|
|
results = (embedding, ref_emb, score)
|
|
assert check_return_type(results)
|
|
return results
|
|
|
|
@staticmethod
|
|
def from_pretrained(
|
|
model_tag: Optional[str] = None,
|
|
**kwargs: Optional[Any],
|
|
):
|
|
"""Build Speech2Xvector instance from the pretrained model.
|
|
|
|
Args:
|
|
model_tag (Optional[str]): Model tag of the pretrained models.
|
|
Currently, the tags of espnet_model_zoo are supported.
|
|
|
|
Returns:
|
|
Speech2Xvector: Speech2Xvector instance.
|
|
|
|
"""
|
|
if model_tag is not None:
|
|
try:
|
|
from espnet_model_zoo.downloader import ModelDownloader
|
|
|
|
except ImportError:
|
|
logging.error(
|
|
"`espnet_model_zoo` is not installed. "
|
|
"Please install via `pip install -U espnet_model_zoo`."
|
|
)
|
|
raise
|
|
d = ModelDownloader()
|
|
kwargs.update(**d.download_and_unpack(model_tag))
|
|
|
|
return Speech2Xvector(**kwargs)
|
|
|
|
|
|
def inference_modelscope(
|
|
output_dir: Optional[str] = None,
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
ngpu: int = 1,
|
|
seed: int = 0,
|
|
num_workers: int = 0,
|
|
log_level: Union[int, str] = "INFO",
|
|
key_file: Optional[str] = None,
|
|
sv_train_config: Optional[str] = "sv.yaml",
|
|
sv_model_file: Optional[str] = "sv.pb",
|
|
model_tag: Optional[str] = None,
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
embedding_node: str = "resnet1_dense",
|
|
sv_threshold: float = 0.9465,
|
|
param_dict: Optional[dict] = None,
|
|
**kwargs,
|
|
):
|
|
assert check_argument_types()
|
|
if batch_size > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
if ngpu > 1:
|
|
raise NotImplementedError("only single GPU decoding is supported")
|
|
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
|
|
if ngpu >= 1 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Set random-seed
|
|
set_all_random_seed(seed)
|
|
|
|
# 2. Build speech2xvector
|
|
speech2xvector_kwargs = dict(
|
|
sv_train_config=sv_train_config,
|
|
sv_model_file=sv_model_file,
|
|
device=device,
|
|
dtype=dtype,
|
|
streaming=streaming,
|
|
embedding_node=embedding_node
|
|
)
|
|
logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs))
|
|
speech2xvector = Speech2Xvector.from_pretrained(
|
|
model_tag=model_tag,
|
|
**speech2xvector_kwargs,
|
|
)
|
|
speech2xvector.sv_model.eval()
|
|
|
|
def _forward(
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
|
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
|
output_dir_v2: Optional[str] = None,
|
|
param_dict: Optional[dict] = None,
|
|
):
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
if data_path_and_name_and_type is None and raw_inputs is not None:
|
|
if isinstance(raw_inputs, torch.Tensor):
|
|
raw_inputs = raw_inputs.numpy()
|
|
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
|
|
|
# 3. Build data-iterator
|
|
loader = ASRTask.build_streaming_iterator(
|
|
data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
preprocess_fn=None,
|
|
collate_fn=None,
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
inference=True,
|
|
)
|
|
|
|
# 7 .Start for-loop
|
|
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
|
embd_writer, ref_embd_writer, score_writer = None, None, None
|
|
if output_path is not None:
|
|
os.makedirs(output_path, exist_ok=True)
|
|
embd_writer = WriteHelper("ark,scp:{}/xvector.ark,{}/xvector.scp".format(output_path, output_path))
|
|
sv_result_list = []
|
|
for keys, batch in loader:
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
|
|
|
embedding, ref_embedding, score = speech2xvector(**batch)
|
|
# Only supporting batch_size==1
|
|
key = keys[0]
|
|
normalized_score = 0.0
|
|
if score is not None:
|
|
score = score.item()
|
|
normalized_score = max(score - sv_threshold, 0.0) / (1.0 - sv_threshold) * 100.0
|
|
item = {"key": key, "value": normalized_score}
|
|
else:
|
|
item = {"key": key, "value": embedding.squeeze(0).cpu().numpy()}
|
|
sv_result_list.append(item)
|
|
if output_path is not None:
|
|
embd_writer(key, embedding[0].cpu().numpy())
|
|
if ref_embedding is not None:
|
|
if ref_embd_writer is None:
|
|
ref_embd_writer = WriteHelper(
|
|
"ark,scp:{}/ref_xvector.ark,{}/ref_xvector.scp".format(output_path, output_path)
|
|
)
|
|
score_writer = open(os.path.join(output_path, "score.txt"), "w")
|
|
ref_embd_writer(key, ref_embedding[0].cpu().numpy())
|
|
score_writer.write("{} {:.6f}\n".format(key, normalized_score))
|
|
|
|
if output_path is not None:
|
|
embd_writer.close()
|
|
if ref_embd_writer is not None:
|
|
ref_embd_writer.close()
|
|
score_writer.close()
|
|
|
|
return sv_result_list
|
|
|
|
return _forward
|
|
|
|
|
|
def inference(
|
|
output_dir: Optional[str],
|
|
batch_size: int,
|
|
dtype: str,
|
|
ngpu: int,
|
|
seed: int,
|
|
num_workers: int,
|
|
log_level: Union[int, str],
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
|
|
key_file: Optional[str],
|
|
sv_train_config: Optional[str],
|
|
sv_model_file: Optional[str],
|
|
model_tag: Optional[str],
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
embedding_node: str = "resnet1_dense",
|
|
sv_threshold: float = 0.9465,
|
|
**kwargs,
|
|
):
|
|
inference_pipeline = inference_modelscope(
|
|
output_dir=output_dir,
|
|
batch_size=batch_size,
|
|
dtype=dtype,
|
|
ngpu=ngpu,
|
|
seed=seed,
|
|
num_workers=num_workers,
|
|
log_level=log_level,
|
|
key_file=key_file,
|
|
sv_train_config=sv_train_config,
|
|
sv_model_file=sv_model_file,
|
|
model_tag=model_tag,
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
streaming=streaming,
|
|
embedding_node=embedding_node,
|
|
sv_threshold=sv_threshold,
|
|
**kwargs,
|
|
)
|
|
|
|
return inference_pipeline(data_path_and_name_and_type, raw_inputs=None)
|
|
|
|
|
|
def get_parser():
|
|
parser = config_argparse.ArgumentParser(
|
|
description="Speaker verification/x-vector extraction",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
# Note(kamo): Use '_' instead of '-' as separator.
|
|
# '-' is confusing if written in yaml.
|
|
parser.add_argument(
|
|
"--log_level",
|
|
type=lambda x: x.upper(),
|
|
default="INFO",
|
|
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
|
help="The verbose level of logging",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=False)
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument(
|
|
"--gpuid_list",
|
|
type=str,
|
|
default="",
|
|
help="The visible gpus",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument(
|
|
"--dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers",
|
|
type=int,
|
|
default=1,
|
|
help="The number of workers used for DataLoader",
|
|
)
|
|
|
|
group = parser.add_argument_group("Input data related")
|
|
group.add_argument(
|
|
"--data_path_and_name_and_type",
|
|
type=str2triple_str,
|
|
required=False,
|
|
action="append",
|
|
)
|
|
group.add_argument("--key_file", type=str_or_none)
|
|
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
|
|
|
group = parser.add_argument_group("The model configuration related")
|
|
group.add_argument(
|
|
"--sv_train_config",
|
|
type=str,
|
|
help="SV training configuration",
|
|
)
|
|
group.add_argument(
|
|
"--sv_model_file",
|
|
type=str,
|
|
help="SV model parameter file",
|
|
)
|
|
group.add_argument(
|
|
"--sv_threshold",
|
|
type=float,
|
|
default=0.9465,
|
|
help="The threshold for verification"
|
|
)
|
|
group.add_argument(
|
|
"--model_tag",
|
|
type=str,
|
|
help="Pretrained model tag. If specify this option, *_train_config and "
|
|
"*_file will be overwritten",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size for inference",
|
|
)
|
|
parser.add_argument("--streaming", type=str2bool, default=False)
|
|
parser.add_argument("--embedding_node", type=str, default="resnet1_dense")
|
|
|
|
return parser
|
|
|
|
|
|
def main(cmd=None):
|
|
print(get_commandline_args(), file=sys.stderr)
|
|
parser = get_parser()
|
|
args = parser.parse_args(cmd)
|
|
kwargs = vars(args)
|
|
kwargs.pop("config", None)
|
|
logging.info("args: {}".format(kwargs))
|
|
if args.output_dir is None:
|
|
jobid, n_gpu = 1, 1
|
|
gpuid = args.gpuid_list.split(",")[jobid-1]
|
|
else:
|
|
jobid = int(args.output_dir.split(".")[-1])
|
|
n_gpu = len(args.gpuid_list.split(","))
|
|
gpuid = args.gpuid_list.split(",")[(jobid - 1) % n_gpu]
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
|
|
results_list = inference(**kwargs)
|
|
for results in results_list:
|
|
print("{} {}".format(results["key"], results["value"]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|