mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
408 lines
14 KiB
Python
408 lines
14 KiB
Python
#!/usr/bin/env python3
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
import sys
|
|
import os
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
from typing import Dict
|
|
from typing import Any
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.parallel import data_parallel
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.tasks.lm import LMTask
|
|
from funasr.datasets.preprocessor import LMPreprocessor
|
|
from funasr.utils.cli_utils import get_commandline_args
|
|
from funasr.fileio.datadir_writer import DatadirWriter
|
|
from funasr.torch_utils.device_funcs import to_device
|
|
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
|
|
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.utils import config_argparse
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str2triple_str
|
|
from funasr.utils.types import str_or_none
|
|
|
|
def inference(
|
|
output_dir: str,
|
|
batch_size: int,
|
|
dtype: str,
|
|
ngpu: int,
|
|
seed: int,
|
|
num_workers: int,
|
|
log_level: Union[int, str],
|
|
train_config: Optional[str],
|
|
model_file: Optional[str],
|
|
log_base: Optional[float],
|
|
key_file: Optional[str] = None,
|
|
allow_variable_data_keys: bool = False,
|
|
split_with_space: Optional[bool] = False,
|
|
seg_dict_file: Optional[str] = None,
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
|
raw_inputs: Union[List[Any], bytes, str] = None,
|
|
**kwargs,
|
|
):
|
|
inference_pipeline = inference_modelscope(
|
|
output_dir=output_dir,
|
|
raw_inputs=raw_inputs,
|
|
batch_size=batch_size,
|
|
dtype=dtype,
|
|
ngpu=ngpu,
|
|
seed=seed,
|
|
num_workers=num_workers,
|
|
log_level=log_level,
|
|
key_file=key_file,
|
|
train_config=train_config,
|
|
model_file=model_file,
|
|
log_base = log_base,
|
|
allow_variable_data_keys = allow_variable_data_keys,
|
|
split_with_space=split_with_space,
|
|
seg_dict_file=seg_dict_file,
|
|
**kwargs,
|
|
)
|
|
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
|
|
|
|
|
def inference_modelscope(
|
|
batch_size: int,
|
|
dtype: str,
|
|
ngpu: int,
|
|
seed: int,
|
|
num_workers: int,
|
|
log_level: Union[int, str],
|
|
key_file: Optional[str],
|
|
train_config: Optional[str],
|
|
model_file: Optional[str],
|
|
log_base: Optional[float] = 10,
|
|
allow_variable_data_keys: bool = False,
|
|
split_with_space: Optional[bool] = False,
|
|
seg_dict_file: Optional[str] = None,
|
|
output_dir: Optional[str] = None,
|
|
param_dict: dict = None,
|
|
**kwargs,
|
|
):
|
|
assert check_argument_types()
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
|
|
if ngpu >= 1 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Set random-seed
|
|
set_all_random_seed(seed)
|
|
|
|
# 2. Build Model
|
|
model, train_args = LMTask.build_model_from_file(
|
|
train_config, model_file, device)
|
|
wrapped_model = ForwardAdaptor(model, "nll")
|
|
wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
|
|
logging.info(f"Model:\n{model}")
|
|
|
|
preprocessor = LMPreprocessor(
|
|
train=False,
|
|
token_type=train_args.token_type,
|
|
token_list=train_args.token_list,
|
|
bpemodel=train_args.bpemodel,
|
|
text_cleaner=train_args.cleaner,
|
|
g2p_type=train_args.g2p,
|
|
text_name="text",
|
|
non_linguistic_symbols=train_args.non_linguistic_symbols,
|
|
split_with_space=split_with_space,
|
|
seg_dict_file=seg_dict_file
|
|
)
|
|
|
|
def _forward(
|
|
data_path_and_name_and_type,
|
|
raw_inputs: Union[List[Any], bytes, str] = None,
|
|
output_dir_v2: Optional[str] = None,
|
|
param_dict: dict = None,
|
|
):
|
|
results = []
|
|
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
|
if output_path is not None:
|
|
writer = DatadirWriter(output_path)
|
|
else:
|
|
writer = None
|
|
|
|
if raw_inputs != None:
|
|
line = raw_inputs.strip()
|
|
key = "lm demo"
|
|
if line=="":
|
|
item = {'key': key, 'value': ""}
|
|
results.append(item)
|
|
return results
|
|
batch = {}
|
|
batch['text'] = line
|
|
if preprocessor != None:
|
|
batch = preprocessor(key, batch)
|
|
|
|
# Force data-precision
|
|
for name in batch:
|
|
value = batch[name]
|
|
if not isinstance(value, np.ndarray):
|
|
raise RuntimeError(
|
|
f"All values must be converted to np.ndarray object "
|
|
f'by preprocessing, but "{name}" is still {type(value)}.'
|
|
)
|
|
# Cast to desired type
|
|
if value.dtype.kind == "f":
|
|
value = value.astype("float32")
|
|
elif value.dtype.kind == "i":
|
|
value = value.astype("long")
|
|
else:
|
|
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
|
|
batch[name] = value
|
|
|
|
batch["text_lengths"] = torch.from_numpy(
|
|
np.array([len(batch["text"])], dtype='int32'))
|
|
batch["text"] = np.expand_dims(batch["text"], axis=0)
|
|
|
|
with torch.no_grad():
|
|
batch = to_device(batch, device)
|
|
if ngpu <= 1:
|
|
nll, lengths = wrapped_model(**batch)
|
|
else:
|
|
nll, lengths = data_parallel(
|
|
wrapped_model, (), range(ngpu), module_kwargs=batch
|
|
)
|
|
## compute ppl
|
|
ppl_out_batch = ""
|
|
ids2tokens = preprocessor.token_id_converter.ids2tokens
|
|
for sent_ids, sent_nll in zip(batch['text'], nll):
|
|
pre_word = "<s>"
|
|
cur_word = None
|
|
sent_lst = ids2tokens(sent_ids) + ['</s>']
|
|
ppl_out = " ".join(sent_lst) + "\n"
|
|
for word, word_nll in zip(sent_lst, sent_nll):
|
|
cur_word = word
|
|
word_nll = -word_nll.cpu()
|
|
if log_base is None:
|
|
word_prob = np.exp(word_nll)
|
|
else:
|
|
word_prob = log_base ** (word_nll / np.log(log_base))
|
|
ppl_out += ' p( {cur} | {pre} ) = {prob} [ {word_nll} ]\n'.format(
|
|
cur=cur_word,
|
|
pre=pre_word,
|
|
prob=round(word_prob.item(), 8),
|
|
word_nll=round(word_nll.item(), 8)
|
|
)
|
|
pre_word = cur_word
|
|
|
|
sent_nll_mean = sent_nll.mean().cpu().numpy()
|
|
sent_nll_sum = sent_nll.sum().cpu().numpy()
|
|
if log_base is None:
|
|
sent_ppl = np.exp(sent_nll_mean)
|
|
else:
|
|
sent_ppl = log_base ** (sent_nll_mean / np.log(log_base))
|
|
ppl_out += 'logprob= {sent_nll} ppl= {sent_ppl}\n\n'.format(
|
|
sent_nll=round(-sent_nll_sum.item(), 4),
|
|
sent_ppl=round(sent_ppl.item(), 4)
|
|
)
|
|
ppl_out_batch += ppl_out
|
|
item = {'key': key, 'value': ppl_out}
|
|
if writer is not None:
|
|
writer["ppl"][key+":\n"] = ppl_out
|
|
results.append(item)
|
|
|
|
return results
|
|
|
|
# 3. Build data-iterator
|
|
loader = LMTask.build_streaming_iterator(
|
|
data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
preprocess_fn=preprocessor,
|
|
collate_fn=LMTask.build_collate_fn(train_args, False),
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
inference=True,
|
|
)
|
|
|
|
# 4. Start for-loop
|
|
total_nll = 0.0
|
|
total_ntokens = 0
|
|
ppl_out_all = ""
|
|
for keys, batch in loader:
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
|
|
ppl_out_batch = ""
|
|
with torch.no_grad():
|
|
batch = to_device(batch, device)
|
|
if ngpu <= 1:
|
|
# NOTE(kamo): data_parallel also should work with ngpu=1,
|
|
# but for debuggability it's better to keep this block.
|
|
nll, lengths = wrapped_model(**batch)
|
|
else:
|
|
nll, lengths = data_parallel(
|
|
wrapped_model, (), range(ngpu), module_kwargs=batch
|
|
)
|
|
## print ppl
|
|
ids2tokens = preprocessor.token_id_converter.ids2tokens
|
|
for key, sent_ids, sent_nll in zip(keys, batch['text'], nll):
|
|
pre_word = "<s>"
|
|
cur_word = None
|
|
sent_lst = ids2tokens(sent_ids) + ['</s>']
|
|
ppl_out = " ".join(sent_lst) + "\n"
|
|
for word, word_nll in zip(sent_lst, sent_nll):
|
|
cur_word = word
|
|
word_nll = -word_nll.cpu()
|
|
if log_base is None:
|
|
word_prob = np.exp(word_nll)
|
|
else:
|
|
word_prob = log_base ** (word_nll / np.log(log_base))
|
|
ppl_out += ' p( {cur} | {pre} ) = {prob} [ {word_nll} ]\n'.format(
|
|
cur=cur_word,
|
|
pre=pre_word,
|
|
prob=round(word_prob.item(), 8),
|
|
word_nll=round(word_nll.item(), 8)
|
|
)
|
|
pre_word = cur_word
|
|
|
|
sent_nll_mean = sent_nll.mean().cpu().numpy()
|
|
sent_nll_sum = sent_nll.sum().cpu().numpy()
|
|
if log_base is None:
|
|
sent_ppl = np.exp(sent_nll_mean)
|
|
else:
|
|
sent_ppl = log_base ** (sent_nll_mean / np.log(log_base))
|
|
ppl_out += 'logprob= {sent_nll} ppl= {sent_ppl}\n\n'.format(
|
|
sent_nll=round(-sent_nll_sum.item(), 4),
|
|
sent_ppl=round(sent_ppl.item(), 4)
|
|
)
|
|
ppl_out_batch += ppl_out
|
|
utt2nll = round(-sent_nll_sum.item(), 5)
|
|
item = {'key': key, 'value': ppl_out}
|
|
if writer is not None:
|
|
writer["ppl"][key+":\n"] = ppl_out
|
|
writer["utt2nll"][key] = str(utt2nll)
|
|
results.append(item)
|
|
|
|
ppl_out_all += ppl_out_batch
|
|
|
|
assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
|
|
# nll: (B, L) -> (B,)
|
|
nll = nll.detach().cpu().numpy().sum(1)
|
|
# lengths: (B,)
|
|
lengths = lengths.detach().cpu().numpy()
|
|
total_nll += nll.sum()
|
|
total_ntokens += lengths.sum()
|
|
|
|
if log_base is None:
|
|
ppl = np.exp(total_nll / total_ntokens)
|
|
else:
|
|
ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))
|
|
|
|
avg_ppl = 'logprob= {total_nll} ppl= {total_ppl}\n'.format(
|
|
total_nll=round(-total_nll.item(), 4),
|
|
total_ppl=round(ppl.item(), 4)
|
|
)
|
|
item = {'key': 'AVG PPL', 'value': avg_ppl}
|
|
ppl_out_all += avg_ppl
|
|
if writer is not None:
|
|
writer["ppl"]["AVG PPL : "] = avg_ppl
|
|
results.append(item)
|
|
|
|
return results
|
|
|
|
return _forward
|
|
|
|
|
|
def get_parser():
|
|
parser = config_argparse.ArgumentParser(
|
|
description="Calc perplexity",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--log_level",
|
|
type=lambda x: x.upper(),
|
|
default="INFO",
|
|
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
|
help="The verbose level of logging",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=False)
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument(
|
|
"--dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers",
|
|
type=int,
|
|
default=1,
|
|
help="The number of workers used for DataLoader",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size for inference",
|
|
)
|
|
parser.add_argument(
|
|
"--log_base",
|
|
type=float_or_none,
|
|
default=10,
|
|
help="The base of logarithm for Perplexity. "
|
|
"If None, napier's constant is used.",
|
|
required=False
|
|
)
|
|
|
|
group = parser.add_argument_group("Input data related")
|
|
group.add_argument(
|
|
"--data_path_and_name_and_type",
|
|
type=str2triple_str,
|
|
action="append",
|
|
required=False
|
|
)
|
|
group.add_argument(
|
|
"--raw_inputs",
|
|
type=str,
|
|
required=False
|
|
)
|
|
group.add_argument("--key_file", type=str_or_none)
|
|
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
|
|
|
group.add_argument("--split_with_space", type=str2bool, default=False)
|
|
group.add_argument("--seg_dict_file", type=str_or_none)
|
|
|
|
group = parser.add_argument_group("The model configuration related")
|
|
group.add_argument("--train_config", type=str)
|
|
group.add_argument("--model_file", type=str)
|
|
|
|
return parser
|
|
|
|
|
|
def main(cmd=None):
|
|
print(get_commandline_args(), file=sys.stderr)
|
|
parser = get_parser()
|
|
args = parser.parse_args(cmd)
|
|
kwargs = vars(args)
|
|
inference(**kwargs)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|