mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
323 lines
12 KiB
Python
323 lines
12 KiB
Python
#!/usr/bin/env python3
|
||
import argparse
|
||
import logging
|
||
from pathlib import Path
|
||
import sys
|
||
from typing import Optional
|
||
from typing import Sequence
|
||
from typing import Tuple
|
||
from typing import Union
|
||
from typing import Any
|
||
from typing import List
|
||
|
||
import numpy as np
|
||
import torch
|
||
from typeguard import check_argument_types
|
||
|
||
from funasr.datasets.preprocessor import CodeMixTokenizerCommonPreprocessor
|
||
from funasr.utils.cli_utils import get_commandline_args
|
||
from funasr.tasks.punctuation import PunctuationTask
|
||
from funasr.torch_utils.device_funcs import to_device
|
||
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
|
||
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
||
from funasr.utils import config_argparse
|
||
from funasr.utils.types import str2triple_str
|
||
from funasr.utils.types import str_or_none
|
||
from funasr.datasets.preprocessor import split_to_mini_sentence
|
||
|
||
|
||
class Text2Punc:
|
||
|
||
def __init__(
|
||
self,
|
||
train_config: Optional[str],
|
||
model_file: Optional[str],
|
||
device: str = "cpu",
|
||
dtype: str = "float32",
|
||
):
|
||
# Build Model
|
||
model, train_args = PunctuationTask.build_model_from_file(train_config, model_file, device)
|
||
self.device = device
|
||
# Wrape model to make model.nll() data-parallel
|
||
self.wrapped_model = ForwardAdaptor(model, "inference")
|
||
self.wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
|
||
# logging.info(f"Model:\n{model}")
|
||
self.punc_list = train_args.punc_list
|
||
self.period = 0
|
||
for i in range(len(self.punc_list)):
|
||
if self.punc_list[i] == ",":
|
||
self.punc_list[i] = ","
|
||
elif self.punc_list[i] == "?":
|
||
self.punc_list[i] = "?"
|
||
elif self.punc_list[i] == "。":
|
||
self.period = i
|
||
self.preprocessor = CodeMixTokenizerCommonPreprocessor(
|
||
train=False,
|
||
token_type=train_args.token_type,
|
||
token_list=train_args.token_list,
|
||
bpemodel=train_args.bpemodel,
|
||
text_cleaner=train_args.cleaner,
|
||
g2p_type=train_args.g2p,
|
||
text_name="text",
|
||
non_linguistic_symbols=train_args.non_linguistic_symbols,
|
||
)
|
||
print("start decoding!!!")
|
||
|
||
@torch.no_grad()
|
||
def __call__(self, text: Union[list, str], split_size=20):
|
||
data = {"text": text}
|
||
result = self.preprocessor(data=data, uid="12938712838719")
|
||
split_text = self.preprocessor.pop_split_text_data(result)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(data["text"], split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = torch.from_numpy(np.array([], dtype='int32'))
|
||
new_mini_sentence = ""
|
||
new_mini_sentence_punc = []
|
||
cache_pop_trigger_limit = 200
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||
data = {
|
||
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
|
||
"text_lengths": torch.from_numpy(np.array([len(mini_sentence_id)], dtype='int32')),
|
||
}
|
||
data = to_device(data, self.device)
|
||
y, _ = self.wrapped_model(**data)
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
punctuations = indices
|
||
if indices.size()[0] != 1:
|
||
punctuations = torch.squeeze(indices)
|
||
assert punctuations.size()[0] == len(mini_sentence)
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||
punctuations = punctuations[0:sentenceEnd + 1]
|
||
|
||
# if len(punctuations) == 0:
|
||
# continue
|
||
|
||
punctuations_np = punctuations.cpu().numpy()
|
||
new_mini_sentence_punc += [int(x) for x in punctuations_np]
|
||
words_with_punc = []
|
||
for i in range(len(mini_sentence)):
|
||
if i > 0:
|
||
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
words_with_punc.append(mini_sentence[i])
|
||
if self.punc_list[punctuations[i]] != "_":
|
||
words_with_punc.append(self.punc_list[punctuations[i]])
|
||
new_mini_sentence += "".join(words_with_punc)
|
||
# Add Period for the end of the sentence
|
||
new_mini_sentence_out = new_mini_sentence
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||
if mini_sentence_i == len(mini_sentences) - 1:
|
||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?":
|
||
new_mini_sentence_out = new_mini_sentence + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
return new_mini_sentence_out, new_mini_sentence_punc_out
|
||
|
||
|
||
def inference(
|
||
batch_size: int,
|
||
dtype: str,
|
||
ngpu: int,
|
||
seed: int,
|
||
num_workers: int,
|
||
output_dir: str,
|
||
log_level: Union[int, str],
|
||
train_config: Optional[str],
|
||
model_file: Optional[str],
|
||
key_file: Optional[str] = None,
|
||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
||
raw_inputs: Union[List[Any], bytes, str] = None,
|
||
cache: List[Any] = None,
|
||
param_dict: dict = None,
|
||
**kwargs,
|
||
):
|
||
inference_pipeline = inference_modelscope(
|
||
output_dir=output_dir,
|
||
batch_size=batch_size,
|
||
dtype=dtype,
|
||
ngpu=ngpu,
|
||
seed=seed,
|
||
num_workers=num_workers,
|
||
log_level=log_level,
|
||
key_file=key_file,
|
||
train_config=train_config,
|
||
model_file=model_file,
|
||
param_dict=param_dict,
|
||
**kwargs,
|
||
)
|
||
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
||
|
||
|
||
def inference_modelscope(
|
||
batch_size: int,
|
||
dtype: str,
|
||
ngpu: int,
|
||
seed: int,
|
||
num_workers: int,
|
||
log_level: Union[int, str],
|
||
key_file: Optional[str],
|
||
train_config: Optional[str],
|
||
model_file: Optional[str],
|
||
output_dir: Optional[str] = None,
|
||
param_dict: dict = None,
|
||
**kwargs,
|
||
):
|
||
assert check_argument_types()
|
||
logging.basicConfig(
|
||
level=log_level,
|
||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||
)
|
||
|
||
if ngpu >= 1 and torch.cuda.is_available():
|
||
device = "cuda"
|
||
else:
|
||
device = "cpu"
|
||
|
||
# 1. Set random-seed
|
||
set_all_random_seed(seed)
|
||
text2punc = Text2Punc(train_config, model_file, device)
|
||
|
||
def _forward(
|
||
data_path_and_name_and_type,
|
||
raw_inputs: Union[List[Any], bytes, str] = None,
|
||
output_dir_v2: Optional[str] = None,
|
||
cache: List[Any] = None,
|
||
param_dict: dict = None,
|
||
):
|
||
results = []
|
||
split_size = 20
|
||
|
||
if raw_inputs != None:
|
||
line = raw_inputs.strip()
|
||
key = "demo"
|
||
if line == "":
|
||
item = {'key': key, 'value': ""}
|
||
results.append(item)
|
||
return results
|
||
result, _ = text2punc(line)
|
||
item = {'key': key, 'value': result}
|
||
results.append(item)
|
||
print(results)
|
||
return results
|
||
|
||
for inference_text, _, _ in data_path_and_name_and_type:
|
||
with open(inference_text, "r", encoding="utf-8") as fin:
|
||
for line in fin:
|
||
line = line.strip()
|
||
segs = line.split("\t")
|
||
if len(segs) != 2:
|
||
continue
|
||
key = segs[0]
|
||
if len(segs[1]) == 0:
|
||
continue
|
||
result, _ = text2punc(segs[1])
|
||
item = {'key': key, 'value': result}
|
||
results.append(item)
|
||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||
if output_path != None:
|
||
output_file_name = "infer.out"
|
||
Path(output_path).mkdir(parents=True, exist_ok=True)
|
||
output_file_path = (Path(output_path) / output_file_name).absolute()
|
||
with open(output_file_path, "w", encoding="utf-8") as fout:
|
||
for item_i in results:
|
||
key_out = item_i["key"]
|
||
value_out = item_i["value"]
|
||
fout.write(f"{key_out}\t{value_out}\n")
|
||
return results
|
||
|
||
return _forward
|
||
|
||
|
||
def get_parser():
|
||
parser = config_argparse.ArgumentParser(
|
||
description="Punctuation inference",
|
||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--log_level",
|
||
type=lambda x: x.upper(),
|
||
default="INFO",
|
||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||
help="The verbose level of logging",
|
||
)
|
||
|
||
parser.add_argument("--output_dir", type=str, required=False)
|
||
parser.add_argument(
|
||
"--ngpu",
|
||
type=int,
|
||
default=0,
|
||
help="The number of gpus. 0 indicates CPU mode",
|
||
)
|
||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||
parser.add_argument(
|
||
"--dtype",
|
||
default="float32",
|
||
choices=["float16", "float32", "float64"],
|
||
help="Data type",
|
||
)
|
||
parser.add_argument(
|
||
"--num_workers",
|
||
type=int,
|
||
default=1,
|
||
help="The number of workers used for DataLoader",
|
||
)
|
||
parser.add_argument(
|
||
"--batch_size",
|
||
type=int,
|
||
default=1,
|
||
help="The batch size for inference",
|
||
)
|
||
|
||
group = parser.add_argument_group("Input data related")
|
||
group.add_argument("--data_path_and_name_and_type", type=str2triple_str, action="append", required=False)
|
||
group.add_argument("--raw_inputs", type=str, required=False)
|
||
group.add_argument("--cache", type=list, required=False)
|
||
group.add_argument("--param_dict", type=dict, required=False)
|
||
group.add_argument("--key_file", type=str_or_none)
|
||
|
||
group = parser.add_argument_group("The model configuration related")
|
||
group.add_argument("--train_config", type=str)
|
||
group.add_argument("--model_file", type=str)
|
||
|
||
return parser
|
||
|
||
|
||
def main(cmd=None):
|
||
print(get_commandline_args(), file=sys.stderr)
|
||
parser = get_parser()
|
||
args = parser.parse_args(cmd)
|
||
kwargs = vars(args)
|
||
# kwargs.pop("config", None)
|
||
inference(**kwargs)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|