FunASR/funasr/bin/lm_inference.py
2023-02-17 14:37:00 +08:00

408 lines
14 KiB
Python

#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
import sys
import os
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
from typing import Dict
from typing import Any
from typing import List
import numpy as np
import torch
from torch.nn.parallel import data_parallel
from typeguard import check_argument_types
from funasr.tasks.lm import LMTask
from funasr.datasets.preprocessor import LMPreprocessor
from funasr.utils.cli_utils import get_commandline_args
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import config_argparse
from funasr.utils.types import float_or_none
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
train_config: Optional[str],
model_file: Optional[str],
log_base: Optional[float],
key_file: Optional[str] = None,
allow_variable_data_keys: bool = False,
split_with_space: Optional[bool] = False,
seg_dict_file: Optional[str] = None,
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
raw_inputs: Union[List[Any], bytes, str] = None,
**kwargs,
):
inference_pipeline = inference_modelscope(
output_dir=output_dir,
raw_inputs=raw_inputs,
batch_size=batch_size,
dtype=dtype,
ngpu=ngpu,
seed=seed,
num_workers=num_workers,
log_level=log_level,
key_file=key_file,
train_config=train_config,
model_file=model_file,
log_base = log_base,
allow_variable_data_keys = allow_variable_data_keys,
split_with_space=split_with_space,
seg_dict_file=seg_dict_file,
**kwargs,
)
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
def inference_modelscope(
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
log_base: Optional[float] = 10,
allow_variable_data_keys: bool = False,
split_with_space: Optional[bool] = False,
seg_dict_file: Optional[str] = None,
output_dir: Optional[str] = None,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build Model
model, train_args = LMTask.build_model_from_file(
train_config, model_file, device)
wrapped_model = ForwardAdaptor(model, "nll")
wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
logging.info(f"Model:\n{model}")
preprocessor = LMPreprocessor(
train=False,
token_type=train_args.token_type,
token_list=train_args.token_list,
bpemodel=train_args.bpemodel,
text_cleaner=train_args.cleaner,
g2p_type=train_args.g2p,
text_name="text",
non_linguistic_symbols=train_args.non_linguistic_symbols,
split_with_space=split_with_space,
seg_dict_file=seg_dict_file
)
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[List[Any], bytes, str] = None,
output_dir_v2: Optional[str] = None,
param_dict: dict = None,
):
results = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
if raw_inputs != None:
line = raw_inputs.strip()
key = "lm demo"
if line=="":
item = {'key': key, 'value': ""}
results.append(item)
return results
batch = {}
batch['text'] = line
if preprocessor != None:
batch = preprocessor(key, batch)
# Force data-precision
for name in batch:
value = batch[name]
if not isinstance(value, np.ndarray):
raise RuntimeError(
f"All values must be converted to np.ndarray object "
f'by preprocessing, but "{name}" is still {type(value)}.'
)
# Cast to desired type
if value.dtype.kind == "f":
value = value.astype("float32")
elif value.dtype.kind == "i":
value = value.astype("long")
else:
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
batch[name] = value
batch["text_lengths"] = torch.from_numpy(
np.array([len(batch["text"])], dtype='int32'))
batch["text"] = np.expand_dims(batch["text"], axis=0)
with torch.no_grad():
batch = to_device(batch, device)
if ngpu <= 1:
nll, lengths = wrapped_model(**batch)
else:
nll, lengths = data_parallel(
wrapped_model, (), range(ngpu), module_kwargs=batch
)
## compute ppl
ppl_out_batch = ""
ids2tokens = preprocessor.token_id_converter.ids2tokens
for sent_ids, sent_nll in zip(batch['text'], nll):
pre_word = "<s>"
cur_word = None
sent_lst = ids2tokens(sent_ids) + ['</s>']
ppl_out = " ".join(sent_lst) + "\n"
for word, word_nll in zip(sent_lst, sent_nll):
cur_word = word
word_nll = -word_nll.cpu()
if log_base is None:
word_prob = np.exp(word_nll)
else:
word_prob = log_base ** (word_nll / np.log(log_base))
ppl_out += ' p( {cur} | {pre} ) = {prob} [ {word_nll} ]\n'.format(
cur=cur_word,
pre=pre_word,
prob=round(word_prob.item(), 8),
word_nll=round(word_nll.item(), 8)
)
pre_word = cur_word
sent_nll_mean = sent_nll.mean().cpu().numpy()
sent_nll_sum = sent_nll.sum().cpu().numpy()
if log_base is None:
sent_ppl = np.exp(sent_nll_mean)
else:
sent_ppl = log_base ** (sent_nll_mean / np.log(log_base))
ppl_out += 'logprob= {sent_nll} ppl= {sent_ppl}\n\n'.format(
sent_nll=round(-sent_nll_sum.item(), 4),
sent_ppl=round(sent_ppl.item(), 4)
)
ppl_out_batch += ppl_out
item = {'key': key, 'value': ppl_out}
if writer is not None:
writer["ppl"][key+":\n"] = ppl_out
results.append(item)
return results
# 3. Build data-iterator
loader = LMTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=preprocessor,
collate_fn=LMTask.build_collate_fn(train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
total_nll = 0.0
total_ntokens = 0
ppl_out_all = ""
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
ppl_out_batch = ""
with torch.no_grad():
batch = to_device(batch, device)
if ngpu <= 1:
# NOTE(kamo): data_parallel also should work with ngpu=1,
# but for debuggability it's better to keep this block.
nll, lengths = wrapped_model(**batch)
else:
nll, lengths = data_parallel(
wrapped_model, (), range(ngpu), module_kwargs=batch
)
## print ppl
ids2tokens = preprocessor.token_id_converter.ids2tokens
for key, sent_ids, sent_nll in zip(keys, batch['text'], nll):
pre_word = "<s>"
cur_word = None
sent_lst = ids2tokens(sent_ids) + ['</s>']
ppl_out = " ".join(sent_lst) + "\n"
for word, word_nll in zip(sent_lst, sent_nll):
cur_word = word
word_nll = -word_nll.cpu()
if log_base is None:
word_prob = np.exp(word_nll)
else:
word_prob = log_base ** (word_nll / np.log(log_base))
ppl_out += ' p( {cur} | {pre} ) = {prob} [ {word_nll} ]\n'.format(
cur=cur_word,
pre=pre_word,
prob=round(word_prob.item(), 8),
word_nll=round(word_nll.item(), 8)
)
pre_word = cur_word
sent_nll_mean = sent_nll.mean().cpu().numpy()
sent_nll_sum = sent_nll.sum().cpu().numpy()
if log_base is None:
sent_ppl = np.exp(sent_nll_mean)
else:
sent_ppl = log_base ** (sent_nll_mean / np.log(log_base))
ppl_out += 'logprob= {sent_nll} ppl= {sent_ppl}\n\n'.format(
sent_nll=round(-sent_nll_sum.item(), 4),
sent_ppl=round(sent_ppl.item(), 4)
)
ppl_out_batch += ppl_out
utt2nll = round(-sent_nll_sum.item(), 5)
item = {'key': key, 'value': ppl_out}
if writer is not None:
writer["ppl"][key+":\n"] = ppl_out
writer["utt2nll"][key] = str(utt2nll)
results.append(item)
ppl_out_all += ppl_out_batch
assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
# nll: (B, L) -> (B,)
nll = nll.detach().cpu().numpy().sum(1)
# lengths: (B,)
lengths = lengths.detach().cpu().numpy()
total_nll += nll.sum()
total_ntokens += lengths.sum()
if log_base is None:
ppl = np.exp(total_nll / total_ntokens)
else:
ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))
avg_ppl = 'logprob= {total_nll} ppl= {total_ppl}\n'.format(
total_nll=round(-total_nll.item(), 4),
total_ppl=round(ppl.item(), 4)
)
item = {'key': 'AVG PPL', 'value': avg_ppl}
ppl_out_all += avg_ppl
if writer is not None:
writer["ppl"]["AVG PPL : "] = avg_ppl
results.append(item)
return results
return _forward
def get_parser():
parser = config_argparse.ArgumentParser(
description="Calc perplexity",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=False)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
parser.add_argument(
"--log_base",
type=float_or_none,
default=10,
help="The base of logarithm for Perplexity. "
"If None, napier's constant is used.",
required=False
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
action="append",
required=False
)
group.add_argument(
"--raw_inputs",
type=str,
required=False
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group.add_argument("--split_with_space", type=str2bool, default=False)
group.add_argument("--seg_dict_file", type=str_or_none)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--train_config", type=str)
group.add_argument("--model_file", type=str)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
inference(**kwargs)
if __name__ == "__main__":
main()