mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
162 lines
6.4 KiB
Python
162 lines
6.4 KiB
Python
import torch
|
||
import codecs
|
||
import logging
|
||
import argparse
|
||
import numpy as np
|
||
# import edit_distance
|
||
from itertools import zip_longest
|
||
|
||
|
||
def cif_wo_hidden(alphas, threshold):
|
||
batch_size, len_time = alphas.size()
|
||
# loop varss
|
||
integrate = torch.zeros([batch_size], device=alphas.device)
|
||
# intermediate vars along time
|
||
list_fires = []
|
||
for t in range(len_time):
|
||
alpha = alphas[:, t]
|
||
integrate += alpha
|
||
list_fires.append(integrate)
|
||
fire_place = integrate >= threshold
|
||
integrate = torch.where(fire_place,
|
||
integrate - torch.ones([batch_size], device=alphas.device)*threshold,
|
||
integrate)
|
||
fires = torch.stack(list_fires, 1)
|
||
return fires
|
||
|
||
|
||
def ts_prediction_lfr6_standard(us_alphas,
|
||
us_peaks,
|
||
char_list,
|
||
vad_offset=0.0,
|
||
force_time_shift=-1.5,
|
||
sil_in_str=True
|
||
):
|
||
if not len(char_list):
|
||
return "", []
|
||
START_END_THRESHOLD = 5
|
||
MAX_TOKEN_DURATION = 12
|
||
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
||
if len(us_alphas.shape) == 2:
|
||
alphas, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only
|
||
else:
|
||
alphas, peaks = us_alphas, us_peaks
|
||
if char_list[-1] == '</s>':
|
||
char_list = char_list[:-1]
|
||
fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
|
||
if len(fire_place) != len(char_list) + 1:
|
||
alphas /= (alphas.sum() / (len(char_list) + 1))
|
||
alphas = alphas.unsqueeze(0)
|
||
peaks = cif_wo_hidden(alphas, threshold=1.0-1e-4)[0]
|
||
fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
|
||
num_frames = peaks.shape[0]
|
||
timestamp_list = []
|
||
new_char_list = []
|
||
# for bicif model trained with large data, cif2 actually fires when a character starts
|
||
# so treat the frames between two peaks as the duration of the former token
|
||
fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
|
||
# assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
||
# begin silence
|
||
if fire_place[0] > START_END_THRESHOLD:
|
||
# char_list.insert(0, '<sil>')
|
||
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
|
||
new_char_list.append('<sil>')
|
||
# tokens timestamp
|
||
for i in range(len(fire_place)-1):
|
||
new_char_list.append(char_list[i])
|
||
if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION:
|
||
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||
else:
|
||
# cut the duration to token and sil of the 0-weight frames last long
|
||
_split = fire_place[i] + MAX_TOKEN_DURATION
|
||
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
|
||
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||
new_char_list.append('<sil>')
|
||
# tail token and end silence
|
||
# new_char_list.append(char_list[-1])
|
||
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
||
_end = (num_frames + fire_place[-1]) * 0.5
|
||
# _end = fire_place[-1]
|
||
timestamp_list[-1][1] = _end*TIME_RATE
|
||
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
|
||
new_char_list.append("<sil>")
|
||
else:
|
||
timestamp_list[-1][1] = num_frames*TIME_RATE
|
||
if vad_offset: # add offset time in model with vad
|
||
for i in range(len(timestamp_list)):
|
||
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
|
||
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
|
||
res_txt = ""
|
||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||
#if char != '<sil>':
|
||
if not sil_in_str and char == '<sil>': continue
|
||
res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
|
||
res = []
|
||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||
if char != '<sil>':
|
||
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
||
return res_txt, res
|
||
|
||
|
||
def timestamp_sentence(punc_id_list, timestamp_postprocessed, text_postprocessed):
|
||
punc_list = [',', '。', '?', '、']
|
||
res = []
|
||
if text_postprocessed is None:
|
||
return res
|
||
if timestamp_postprocessed is None:
|
||
return res
|
||
if len(timestamp_postprocessed) == 0:
|
||
return res
|
||
if len(text_postprocessed) == 0:
|
||
return res
|
||
|
||
if punc_id_list is None or len(punc_id_list) == 0:
|
||
res.append({
|
||
'text': text_postprocessed.split(),
|
||
"start": timestamp_postprocessed[0][0],
|
||
"end": timestamp_postprocessed[-1][1],
|
||
"timestamp": timestamp_postprocessed,
|
||
})
|
||
return res
|
||
if len(punc_id_list) != len(timestamp_postprocessed):
|
||
logging.warning("length mismatch between punc and timestamp")
|
||
sentence_text = ""
|
||
sentence_text_seg = ""
|
||
ts_list = []
|
||
sentence_start = timestamp_postprocessed[0][0]
|
||
sentence_end = timestamp_postprocessed[0][1]
|
||
texts = text_postprocessed.split()
|
||
punc_stamp_text_list = list(zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None))
|
||
for punc_stamp_text in punc_stamp_text_list:
|
||
punc_id, timestamp, text = punc_stamp_text
|
||
# sentence_text += text if text is not None else ''
|
||
if text is not None:
|
||
if 'a' <= text[0] <= 'z' or 'A' <= text[0] <= 'Z':
|
||
sentence_text += ' ' + text
|
||
elif len(sentence_text) and ('a' <= sentence_text[-1] <= 'z' or 'A' <= sentence_text[-1] <= 'Z'):
|
||
sentence_text += ' ' + text
|
||
else:
|
||
sentence_text += text
|
||
sentence_text_seg += text + ' '
|
||
ts_list.append(timestamp)
|
||
|
||
punc_id = int(punc_id) if punc_id is not None else 1
|
||
sentence_end = timestamp[1] if timestamp is not None else sentence_end
|
||
|
||
if punc_id > 1:
|
||
sentence_text += punc_list[punc_id - 2]
|
||
res.append({
|
||
'text': sentence_text,
|
||
"start": sentence_start,
|
||
"end": sentence_end,
|
||
"timestamp": ts_list
|
||
})
|
||
sentence_text = ''
|
||
sentence_text_seg = ''
|
||
ts_list = []
|
||
sentence_start = sentence_end
|
||
return res
|
||
|
||
|
||
|