mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
245 lines
9.9 KiB
Python
245 lines
9.9 KiB
Python
# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
from contextlib import contextmanager
|
|
from distutils.version import LooseVersion
|
|
from typing import Dict
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
|
from funasr.modules.eend_ola.encoder import EENDOLATransformerEncoder
|
|
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
|
|
from funasr.modules.eend_ola.utils.power import generate_mapping_dict
|
|
from funasr.torch_utils.device_funcs import force_gatherable
|
|
from funasr.train.abs_espnet_model import AbsESPnetModel
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
pass
|
|
else:
|
|
# Nothing to do if torch<1.6.0
|
|
@contextmanager
|
|
def autocast(enabled=True):
|
|
yield
|
|
|
|
|
|
def pad_attractor(att, max_n_speakers):
|
|
C, D = att.shape
|
|
if C < max_n_speakers:
|
|
att = torch.cat([att, torch.zeros(max_n_speakers - C, D).to(torch.float32).to(att.device)], dim=0)
|
|
return att
|
|
|
|
|
|
class DiarEENDOLAModel(AbsESPnetModel):
|
|
"""EEND-OLA diarization model"""
|
|
|
|
def __init__(
|
|
self,
|
|
frontend: WavFrontendMel23,
|
|
encoder: EENDOLATransformerEncoder,
|
|
encoder_decoder_attractor: EncoderDecoderAttractor,
|
|
n_units: int = 256,
|
|
max_n_speaker: int = 8,
|
|
attractor_loss_weight: float = 1.0,
|
|
mapping_dict=None,
|
|
**kwargs,
|
|
):
|
|
assert check_argument_types()
|
|
|
|
super().__init__()
|
|
self.frontend = frontend
|
|
self.encoder = encoder
|
|
self.encoder_decoder_attractor = encoder_decoder_attractor
|
|
self.attractor_loss_weight = attractor_loss_weight
|
|
self.max_n_speaker = max_n_speaker
|
|
if mapping_dict is None:
|
|
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
|
|
self.mapping_dict = mapping_dict
|
|
# PostNet
|
|
self.PostNet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True)
|
|
self.output_layer = nn.Linear(n_units, mapping_dict['oov'] + 1)
|
|
|
|
def forward_encoder(self, xs, ilens):
|
|
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
|
|
pad_shape = xs.shape
|
|
xs_mask = [torch.ones(ilen).to(xs.device) for ilen in ilens]
|
|
xs_mask = torch.nn.utils.rnn.pad_sequence(xs_mask, batch_first=True, padding_value=0).unsqueeze(-2)
|
|
emb = self.encoder(xs, xs_mask)
|
|
emb = torch.split(emb.view(pad_shape[0], pad_shape[1], -1), 1, dim=0)
|
|
emb = [e[0][:ilen] for e, ilen in zip(emb, ilens)]
|
|
return emb
|
|
|
|
def forward_post_net(self, logits, ilens):
|
|
maxlen = torch.max(ilens).to(torch.int).item()
|
|
logits = nn.utils.rnn.pad_sequence(logits, batch_first=True, padding_value=-1)
|
|
logits = nn.utils.rnn.pack_padded_sequence(logits, ilens, batch_first=True, enforce_sorted=False)
|
|
outputs, (_, _) = self.PostNet(logits)
|
|
outputs = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True, padding_value=-1, total_length=maxlen)[0]
|
|
outputs = [output[:ilens[i].to(torch.int).item()] for i, output in enumerate(outputs)]
|
|
outputs = [self.output_layer(output) for output in outputs]
|
|
return outputs
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Frontend + Encoder + Decoder + Calc loss
|
|
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
assert text_lengths.dim() == 1, text_lengths.shape
|
|
# Check that batch_size is unified
|
|
assert (
|
|
speech.shape[0]
|
|
== speech_lengths.shape[0]
|
|
== text.shape[0]
|
|
== text_lengths.shape[0]
|
|
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
|
|
batch_size = speech.shape[0]
|
|
|
|
# for data-parallel
|
|
text = text[:, : text_lengths.max()]
|
|
|
|
# 1. Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
intermediate_outs = None
|
|
if isinstance(encoder_out, tuple):
|
|
intermediate_outs = encoder_out[1]
|
|
encoder_out = encoder_out[0]
|
|
|
|
loss_att, acc_att, cer_att, wer_att = None, None, None, None
|
|
loss_ctc, cer_ctc = None, None
|
|
stats = dict()
|
|
|
|
# 1. CTC branch
|
|
if self.ctc_weight != 0.0:
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# Collect CTC branch stats
|
|
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
|
stats["cer_ctc"] = cer_ctc
|
|
|
|
# Intermediate CTC (optional)
|
|
loss_interctc = 0.0
|
|
if self.interctc_weight != 0.0 and intermediate_outs is not None:
|
|
for layer_idx, intermediate_out in intermediate_outs:
|
|
# we assume intermediate_out has the same length & padding
|
|
# as those of encoder_out
|
|
loss_ic, cer_ic = self._calc_ctc_loss(
|
|
intermediate_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
loss_interctc = loss_interctc + loss_ic
|
|
|
|
# Collect Intermedaite CTC stats
|
|
stats["loss_interctc_layer{}".format(layer_idx)] = (
|
|
loss_ic.detach() if loss_ic is not None else None
|
|
)
|
|
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
|
|
|
|
loss_interctc = loss_interctc / len(intermediate_outs)
|
|
|
|
# calculate whole encoder loss
|
|
loss_ctc = (
|
|
1 - self.interctc_weight
|
|
) * loss_ctc + self.interctc_weight * loss_interctc
|
|
|
|
# 2b. Attention decoder branch
|
|
if self.ctc_weight != 1.0:
|
|
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# 3. CTC-Att loss definition
|
|
if self.ctc_weight == 0.0:
|
|
loss = loss_att
|
|
elif self.ctc_weight == 1.0:
|
|
loss = loss_ctc
|
|
else:
|
|
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
|
|
|
|
# Collect Attn branch stats
|
|
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
|
stats["acc"] = acc_att
|
|
stats["cer"] = cer_att
|
|
stats["wer"] = wer_att
|
|
|
|
# Collect total loss stats
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def estimate_sequential(self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
n_speakers: int = None,
|
|
shuffle: bool = True,
|
|
threshold: float = 0.5,
|
|
**kwargs):
|
|
if self.frontend is not None:
|
|
speech = self.frontend(speech)
|
|
speech = [s[:s_len] for s, s_len in zip(speech, speech_lengths)]
|
|
emb = self.forward_encoder(speech, speech_lengths)
|
|
if shuffle:
|
|
orders = [np.arange(e.shape[0]) for e in emb]
|
|
for order in orders:
|
|
np.random.shuffle(order)
|
|
attractors, probs = self.encoder_decoder_attractor.estimate(
|
|
[e[torch.from_numpy(order).to(torch.long).to(speech[0].device)] for e, order in zip(emb, orders)])
|
|
else:
|
|
attractors, probs = self.encoder_decoder_attractor.estimate(emb)
|
|
attractors_active = []
|
|
for p, att, e in zip(probs, attractors, emb):
|
|
if n_speakers and n_speakers >= 0:
|
|
att = att[:n_speakers, ]
|
|
attractors_active.append(att)
|
|
elif threshold is not None:
|
|
silence = torch.nonzero(p < threshold)[0]
|
|
n_spk = silence[0] if silence.size else None
|
|
att = att[:n_spk, ]
|
|
attractors_active.append(att)
|
|
else:
|
|
NotImplementedError('n_speakers or threshold has to be given.')
|
|
raw_n_speakers = [att.shape[0] for att in attractors_active]
|
|
attractors = [
|
|
pad_attractor(att, self.max_n_speaker) if att.shape[0] <= self.max_n_speaker else att[:self.max_n_speaker]
|
|
for att in attractors_active]
|
|
ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)]
|
|
logits = self.forward_post_net(ys, speech_lengths)
|
|
ys = [self.recover_y_from_powerlabel(logit, raw_n_speaker) for logit, raw_n_speaker in
|
|
zip(logits, raw_n_speakers)]
|
|
|
|
return ys, emb, attractors, raw_n_speakers
|
|
|
|
def recover_y_from_powerlabel(self, logit, n_speaker):
|
|
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1)
|
|
oov_index = torch.where(pred == self.mapping_dict['oov'])[0]
|
|
for i in oov_index:
|
|
if i > 0:
|
|
pred[i] = pred[i - 1]
|
|
else:
|
|
pred[i] = 0
|
|
pred = [self.reporter.inv_mapping_func(i, self.mapping_dict) for i in pred]
|
|
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
|
|
decisions = torch.from_numpy(
|
|
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)).to(logit.device).to(
|
|
torch.float32)
|
|
decisions = decisions[:, :n_speaker]
|
|
return decisions
|
|
|
|
def collect_feats(self, **batch: torch.Tensor) -> Dict[str, torch.Tensor]:
|
|
pass |