mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
228 lines
8.8 KiB
Python
228 lines
8.8 KiB
Python
import logging
|
|
import re
|
|
import torch
|
|
import random
|
|
import traceback
|
|
from funasr.register import tables
|
|
from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
|
|
|
|
|
|
@tables.register("dataset_classes", "OpenAIDataset")
|
|
class OpenAIDataset(torch.utils.data.Dataset):
|
|
"""
|
|
SenseVoiceDataset
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path,
|
|
index_ds: str = None,
|
|
frontend=None,
|
|
tokenizer=None,
|
|
int_pad_value: int = -1,
|
|
float_pad_value: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
index_ds_class = tables.index_ds_classes.get(index_ds)
|
|
self.index_ds = index_ds_class(path, **kwargs)
|
|
preprocessor_speech = kwargs.get("preprocessor_speech", None)
|
|
if preprocessor_speech:
|
|
preprocessor_speech_class = tables.preprocessor_classes.get(preprocessor_speech)
|
|
preprocessor_speech = preprocessor_speech_class(
|
|
**kwargs.get("preprocessor_speech_conf")
|
|
)
|
|
self.preprocessor_speech = preprocessor_speech
|
|
preprocessor_text = kwargs.get("preprocessor_text", None)
|
|
if preprocessor_text:
|
|
preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text)
|
|
preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf"))
|
|
self.preprocessor_text = preprocessor_text
|
|
|
|
self.frontend = frontend
|
|
self.fs = 16000 if frontend is None else frontend.fs
|
|
self.data_type = "sound"
|
|
self.tokenizer = tokenizer
|
|
|
|
self.int_pad_value = int_pad_value
|
|
self.float_pad_value = float_pad_value
|
|
self.sos = kwargs.get("sos", "<|startoftranscript|>")
|
|
self.eos = kwargs.get("eos", "<|endoftext|>")
|
|
self.batch_size = kwargs.get("batch_size")
|
|
self.batch_type = kwargs.get("batch_type")
|
|
self.prompt_ids_len = 0
|
|
self.retry = kwargs.get("retry", 10)
|
|
|
|
self.permute = False
|
|
from funasr.frontends.whisper_frontend import WhisperFrontend
|
|
|
|
if isinstance(self.frontend, WhisperFrontend):
|
|
self.permute = True
|
|
|
|
self.pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)")
|
|
# self.kwargs = kwargs
|
|
self.max_token_length = kwargs.get("max_token_length", 1024)
|
|
self.batch_size_scale_ratio_max = kwargs.get("batch_size_scale_ratio_max", 1.5)
|
|
|
|
def get_source_len(self, index):
|
|
item = self.index_ds[index]
|
|
return self.index_ds.get_source_len(item)
|
|
|
|
def get_target_len(self, index):
|
|
item = self.index_ds[index]
|
|
return self.index_ds.get_target_len(item)
|
|
|
|
def __len__(self):
|
|
return len(self.index_ds)
|
|
|
|
def __getitem__(self, index):
|
|
# import pdb;
|
|
# pdb.set_trace()
|
|
|
|
output = None
|
|
|
|
for idx in range(self.retry):
|
|
badcase_flag = False
|
|
if idx == 0:
|
|
index_cur = index
|
|
else:
|
|
index_cur = torch.randint(0, len(self.index_ds), ()).item()
|
|
|
|
item = self.index_ds[index_cur]
|
|
|
|
system = item["system"]
|
|
user = item["user"]
|
|
assistant = item["assistant"]
|
|
|
|
input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg = [], [], [], [], [], []
|
|
|
|
for i, (system_prompt, user_prompt, target_out) in enumerate(
|
|
zip(system, user, assistant)
|
|
):
|
|
|
|
source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
splits = self.pattern.split(source_input)
|
|
source_ids = []
|
|
fbank_mask_i = []
|
|
fbank_beg_i = []
|
|
fbank_lens_i = []
|
|
for k, sub_str in enumerate(splits):
|
|
if not sub_str.startswith("<|startofspeech|>"):
|
|
sub_token = self.tokenizer.encode(sub_str)
|
|
source_ids += sub_token
|
|
fbank_mask_i += [0] * len(sub_token)
|
|
else:
|
|
sub_str = sub_str.replace("<|startofspeech|>", "").replace(
|
|
"<|endofspeech|>", ""
|
|
)
|
|
if sub_str.startswith("!"):
|
|
try:
|
|
data_src = load_audio_text_image_video(sub_str[1:], fs=self.fs)
|
|
except Exception as e:
|
|
logging.error(
|
|
f"Loading wav failed! {str(e)}, {traceback.format_exc()}"
|
|
)
|
|
badcase_flag = True
|
|
continue
|
|
speech, speech_lengths = extract_fbank(
|
|
data_src,
|
|
data_type=self.data_type,
|
|
frontend=self.frontend,
|
|
is_final=True,
|
|
) # speech: [b, T, d]
|
|
if self.permute:
|
|
speech = speech.permute(0, 2, 1)
|
|
# if speech_lengths > self.batch_size:
|
|
# continue
|
|
|
|
olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2
|
|
olens = 1 + (olens - 3 + 2 * 1) // 2
|
|
sub_token_len = (olens - 1) // 2 + 1
|
|
sub_token = [0] * sub_token_len
|
|
fbank_beg_i = [len(source_ids)]
|
|
source_ids += sub_token
|
|
fbank_mask_i += [1] * len(sub_token)
|
|
|
|
if badcase_flag:
|
|
continue
|
|
source_mask = [-100] * len(source_ids)
|
|
target_out = f"{target_out}<|im_end|>"
|
|
target_ids = self.tokenizer.encode(target_out)
|
|
input_ids += source_ids + target_ids
|
|
labels += source_mask + target_ids
|
|
fbank_mask += fbank_mask_i
|
|
fbank_beg.append(fbank_beg_i)
|
|
|
|
if len(input_ids) > self.max_token_length:
|
|
logging.info(
|
|
f"input_ids > max_token_length: {len(input_ids)}>{self.max_token_length}, {item}"
|
|
)
|
|
badcase_flag = True
|
|
if badcase_flag:
|
|
continue
|
|
input_ids = torch.tensor(input_ids, dtype=torch.int64) # [: self.max_token_length]
|
|
attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
|
|
labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length]
|
|
|
|
fbank = speech[0, :, :]
|
|
fbank_lens = speech_lengths
|
|
fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32)
|
|
fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32)
|
|
|
|
output = {
|
|
"speech": fbank,
|
|
"speech_lengths": fbank_lens,
|
|
"fbank_mask": fbank_mask,
|
|
"fbank_beg": fbank_beg,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels_ids": labels,
|
|
}
|
|
break
|
|
|
|
return output
|
|
|
|
def collator(self, samples: list = None):
|
|
|
|
for idx in range(self.retry):
|
|
badcase_flag = False
|
|
|
|
outputs = {}
|
|
for sample in samples:
|
|
if sample is None:
|
|
continue
|
|
for key in sample.keys():
|
|
if key not in outputs:
|
|
outputs[key] = []
|
|
outputs[key].append(sample[key])
|
|
|
|
for key, data_list in outputs.items():
|
|
if isinstance(data_list[0], torch.Tensor):
|
|
if data_list[0].dtype == torch.int64 or data_list[0].dtype == torch.int32:
|
|
|
|
pad_value = self.int_pad_value
|
|
else:
|
|
pad_value = self.float_pad_value
|
|
|
|
outputs[key] = torch.nn.utils.rnn.pad_sequence(
|
|
data_list, batch_first=True, padding_value=pad_value
|
|
)
|
|
|
|
if self.batch_type != "example":
|
|
b, t = outputs["input_ids"].shape
|
|
if b > 1 and b * t > self.batch_size * self.batch_size_scale_ratio_max:
|
|
# beg = torch.randint(0, 2, ()).item()
|
|
# if b < 2:
|
|
# beg = 0
|
|
logging.info(
|
|
f"Warning, b*t: {b}*{t}={b * t} > batch_size*relax: {self.batch_size_scale_ratio_max}*{self.batch_size}={self.batch_size_scale_ratio_max*self.batch_size}, drop half data {idx}th, beg:{beg}"
|
|
)
|
|
# samples = samples[beg : beg + b : 2]
|
|
samples = samples[:-1]
|
|
continue
|
|
|
|
break
|
|
|
|
return outputs
|